0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of sodium nitroprusside foliar application on the growth characteristics and nutrient elements in some grapevine cultivars and rootstocks under salt stress conditions

, , , &
Received 24 Jan 2023, Accepted 24 Jun 2024, Published online: 21 Jul 2024

References

  • Adamu, T. A., B. G. Mun, S. U. Lee, A. Hussain, and B. W. Yun. 2018. Exogenously applied nitric oxide enhances salt tolerance in rice (Oryza sativa L.) at seedling stage. Agronomy 8 (12):276. doi: 10.3390/agronomy8120276.
  • Ahanger, M. A., N. S. Tomar, M. Tittal, S. Argal, and R. Agarwal. 2017. Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiology and Molecular Biology of Plants 23 (4):731–44. doi: 10.1007/s12298-017-0462-7.
  • Ahmad, P., A. A. Abdel Latef, A. Hashem, E. F. Abd-Allah, S. Gucel, and L. S. P. Tran. 2016. Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Frontiers in Plant Science 7:347. doi: 10.3389/fpls.2016.00347.
  • Ahmad, P., P. Alam, T. H. Balawi, F. H. Altalayan, M. A. Ahanger, and M. Ashraf. 2020. Sodium nitroprusside (SNP) improves tolerance to arsenic (As) toxicity in Vicia faba through the modifications of biochemical attributes, antioxidants, ascorbate-glutathione cycle and glyoxalase cycle. Chemosphere 244:125480. doi: 10.1016/j.chemosphere.2019.125480.
  • Akhter, M. S., S. Noreen, S. Mahmood, H-u-R Athar, M. Ashraf, A. Abdullah Alsahli, and P. Ahmad. 2021. Influence of salinity stress on PSII in barley (Hordeum vulgare L.) genotypes, probed by chlorophyll a fluorescence. Journal of King Saud University - Science 33 (1):101239. doi: 10.1016/j.jksus.2020.101239.
  • Alharby, H. F., H. S. Al-Zahrani, K. R. Hakeem, R. U. Rehman, and M. Iqbal. 2019. Salinity-induced antioxidant enzyme system in mungbean [Vigna radiata (L.) Wilczek] cv.) genotypes. Pakistan Journal of Botany 51 (4):1191–8. doi: 10.30848/PJB2019-4(13).
  • Ali, Q., M. K. Daud, M. Z. Haider, S. Ali, M. Rizwan, N. Aslam, A. Noman, N. Iqbal, F. Shahzad, F. Deeba, et al. 2017. Seed priming by sodium nitroprusside improves salt tolerance in wheat (Triticum aestivum L.) by enhancing physiological and biochemical parameters. Plant Physiology and Biochemistry 119:50–8. doi: 10.1016/j.plaphy.2017.08.010.
  • Ardakani, A., M. Armin, and E. Filehkesh. 2016. The effect of rate and application method of potassium on yield and yield components of cotton in saline condition. Iranian Journal of Field Crops Research 14 (3):514–25.
  • Arif, Y., P. Singh, H. Siddiqui, A. Bajguz, and S. Hayat. 2020. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry 156:64–77. doi: 10.1016/j.plaphy.2020.08.042.
  • Arun, M., A. H. Naing, S. M. Jeon, T. N. Ai, T. Aye, and C. K. Kim. 2017. Sodium nitroprusside stimulates growth and shoot regeneration in chrysanthemum. Horticulture, Environment, and Biotechnology 58 (1):78–84. doi: 10.1007/s13580-017-0070-z.
  • Azizian, A., and A. R. Sepaskhah. 2020. Maize response to water, salinity and nitrogen levels: Soil and plant ions accumulation. Iranian Agricultural Research 39 (1):1–12.
  • Behboudian, M. H., E. Törökfalvy, and R. R. Walker. 1986. Effects of salinity on ionic content, water relations and gas exchange parameters in some Citrus scion-rootstock combinations. Scientia Horticulturae 28 (1-2):105–16. doi: 10.1016/0304-4238(86)90130-5.
  • Beligni, M. V., and L. Lamattina. 2001. Nitric oxide: A non traditional regulator of plant growth.
  • Beligni, M. V., and L. Lamattina. 1999. Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta 208 (3):337–44. doi: 10.1007/s004250050567.
  • Campos, F. V., J. A. Oliveira, M. G. Pereira, and F. S. Farnese. 2019. Nitric oxide and phytohormone interactions in the response of Lactuca sativa to salinity stress. Planta 250 (5):1475–89. doi: 10.1007/s00425-019-03236-w.
  • Cramer, G. R., A. Ergül, J. Grimplet, R. L. Tillett, E. A. R. Tattersall, M. C. Bohlman, D. Vincent, J. Sonderegger, J. Evans, C. Osborne, et al. 2007. Water and salinity stress in grapevines: Early and late changes in transcript and metabolite profiles. Functional & Integrative Genomics 7 (2):111–34. doi: 10.1007/s10142-006-0039-y.
  • Cramer, G. R., A. Läuchli, and V. S. Polito. 1985. Displacement of Ca2+ by Na+ from the plasmalemma of root cells: A primary response to salt stress? Plant Physiology 79 (1):207–11. doi: 10.1104/pp.79.1.207.
  • Deinlein, U., A. B. Stephan, T. Horie, W. Luo, G. Xu, and J. I. Schroeder. 2014. Plant salt-tolerance mechanisms. Trends in Plant Science 19 (6):371–9. doi: 10.1016/j.tplants.2014.02.001.
  • Del-Río, L. A., F. J. Corpas, and J. B. Barroso. 2004. Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry 65 (7):783–92. doi: 10.1016/j.phytochem.2004.02.001.
  • Diao, Q., Y. Cao, H. Fan, and Y. Zhang. 2020. Transcriptome analysis deciphers the mechanisms of exogenous nitric oxide action on the response of melon leaves to chilling stress. Biologia Plantarum 64 (1):465–72. doi: 10.32615/bp.2020.021.
  • Doulati-Baneh, H. 2016. Salinity effects on plant tissue nutritional status as well as growth and physiological factors in some cultivars and interspecies hybrids of grape. Iranian Journal of Horticultural Science 47 (1):33–44.
  • Ebrahimi, M., R. Karimi, and M. Amerian. 2019. The effect of foliar application of nitric oxide in alleviating of salt stress in bidaneh sefid grapevine cultivar. Iranian Journal Plant Biology 11:59–64.
  • Erturk, U., N. Sivritepe, C. Yerlikaya, M. Bor, F. Ozdemir, and I. Turkan. 2007. Responses of the cherry rootstock to salinity in vitro. Biologia Plantarum 51 (3):597–600. doi: 10.1007/s10535-007-0132-7.
  • Fan, H., S. Guo, Y. Jiao, R. Zhang, and J. Li. 2007. Effects of exogenous nitric oxide on growth, active oxygen species metabolism, and photosynthetic characteristics in cucumber seedlings under NaCl stress. Frontiers of Agriculture in China 1 (3):308–14. doi: 10.1007/s11703-007-0052-5.
  • Farouk, S., and S. A. Arafa. 2018. Mitigation of salinity stress in canola plants by sodium nitroprusside application. Spanish Journal of Agricultural Research 16 (3):e0802. doi: 10.5424/sjar/2018163-13252.
  • Ferreira-Silva, S. L., J. A. Silveira, E. L. Voigt, L. S. Soares, and R. A. Viégas. 2008. Changes in physiological indicators associated with salt tolerance in two contrasting cashew rootstocks. Brazilian Journal of Plant Physiology 20 (1):51–9. doi: 10.1590/S1677-04202008000100006.
  • Ghadakchiasl, A., A. Mozafari, and N. Ghaderi. 2017. Mitigation by sodium nitroprusside of the effects of salinity on the morpho-physiological and biochemical characteristics of Rubus idaeus under in vitro conditions. Physiology and Molecular Biology of Plants 23 (1):73–83. doi: 10.1007/s12298-016-0396-5.
  • Ghassemi-Golezani, K., N. Farhadi, and N. Nikpour-Rashidabad. 2018. Responses of in vitro-cultured Allium hirtifolium to exogenous sodium nitroprusside under PEG-imposed drought stress. Plant Cell, Tissue and Organ Culture (PCTOC)133 (2):237–48. doi: 10.1007/s11240-017-1377-2.
  • Gill, S. S., M. Hasanuzzaman, K. Nahar, A. Macovei, and N. Tuteja. 2013. Importance of nitric oxide in cadmium stress tolerance in crop plants. Plant Physiology and Biochemistry 63:254–61. doi: 10.1016/j.plaphy.2012.12.001.
  • Grimplet, J., L. G. Deluc, G. R. Cramer, and J. C. Cushman. 2007. Integrating functional genomics with salinity and water deficit stress responses in wine grape Vitis vinifera. In Advances in Molecular Breeding toward Drought and Salt Tolerant Crops, ed. M. A. Jenks, P. M. Hasegawa, and S. M. Jain, 643–68. Dordrecht: Springer. doi: 10.1007/978-1-4020-5578-2_26.
  • Gupta, P., S. Srivastava, and C. S. Seth. 2017. 24-Epibrassinolide and sodium nitroprusside alleviate the salinity stress in Brassica juncea L. cv. Varuna through cross talk among proline, nitrogen metabolism and abscisic acid. Plant and Soil 411 (1-2):483–98. doi: 10.1007/s11104-016-3043-6.
  • Hager, A. 2003. Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: Historical and new aspects. Journal of Plant Research 116 (6):483–505. doi: 10.1007/s10265-003-0110-x.
  • Hameed, A., T. Farooq, A. Hameed, and M. A. Sheikh. 2021. Sodium nitroprusside mediated priming memory invokes water deficit stress acclimation in wheat plants through physio-biochemical alterations. Plant Physiology and Biochemistry 160:329–40. doi: 10.1016/j.plaphy.2021.01.037.
  • Hayat, S., M. Mori, J. Pichtel, and A. Ahmad. 2009. Nitric Oxide in Plant Physiology, 210. United States: Wiley BlackWell.
  • Hayat, S., S. Yadav, M. Nasser-Alyemeni, M. Irfan, A. S. Wani, and A. Ahmad. 2013. Alleviation of salinity stress with sodium nitroprusside in tomato. International Journal of Vegetable Science19 (2):164–76. doi: 10.1080/19315260.2012.697107.
  • Hesami, M., M. H. Daneshvar, and M. Yoosefzadeh-Najafabadi. 2019. An efficient in vitro shoot regeneration through direct organogenesis from seedling-derived petiole and leaf segments and acclimatization of Ficus religiosa. Journal of Forestry Research 30 (3):807–15. doi: 10.1007/s11676-018-0647-0.
  • Hesami, M., M. Tohidfar, M. Alizadeh, and M. H. Daneshvar. 2020. Effects of sodium nitroprusside on callus browning of Ficus religiosa: An important medicinal plant. Journal of Forestry Research 31 (3):789–96. doi: 10.1007/s11676-018-0860-x.
  • Iqra, L., M. S. Rashid, Q. Ali, I. Latif, and A. Mailk. 2020. Evaluation for Na+/K+ ratio under salt stress condition in wheat. Life Science Journal 17 (7):43–7.
  • Ismail, A., S. Takeda, and P. Nick. 2014. Life and death under salt stress: Same players, different timing? Journal of Experimental Botany 65 (12):2963–79. doi: 10.1093/jxb/eru159.
  • Jabeen, Z., H. A. Fayyaz, F. Irshad, N. Hussain, M. N. Hassan, J. Li, S. Rehman, W. Haider, H. Yasmin, S. Mumtaz, et al. 2021. Sodium nitroprusside application improves morphological and physiological attributes of soybean (Glycine max L.) under salinity stress. PLoS One 16 (4):e0248207. doi: 10.1371/journal.pone.0248207.
  • Jamali, B., S. Eshghi, and B. Kholdebarin. 2014. Response of strawberry" Selva" plants on foliar application of sodium nitroprusside (nitric oxide donor) under saline conditions. Journal of Horticultural Research 22 (2):139–50. doi: 10.2478/johr-2014-0031.
  • Kamanga, R. M., K. Echigo, K. Yodoya, A. M. M. Mekawy, and A. Ueda. 2020. Salinity acclimation ameliorates salt stress in tomato (Solanum lycopersicum L.) seedlings by triggering a cascade of physiological processes in the leaves. Scientia Horticulturae 270:109434. doi: 10.1016/j.scienta.2020.109434.
  • Karthik, S., G. Pavan, V. Krishnan, S. Sathish, and M. Manickavasagam. 2019. Sodium nitroprusside enhances regeneration and alleviates salinity stress in soybean [Glycine max (L.) Merrill. Biocatalysis and Agricultural Biotechnology 19:101173. doi: 10.1016/j.bcab.2019.101173.
  • Keller, M. 2015. The Science of Grapevines: Anatomy and Physiology. 2. United States: Elsevier Inc.
  • Khan, M. N., M. Mobin, Z. K. Abbas, and M. H. Siddiqui. 2017. Nitric oxide-induced synthesis of hydrogen sulfide alleviates osmotic stress in wheat seedlings through sustaining antioxidant enzymes, osmolyte accumulation and cysteine homeostasis. Nitric Oxide 68:91–102. doi: 10.1016/j.niox.2017.01.001.
  • Khoshbakht, D., M. R. Asghari, and M. Haghighi. 2018. Effects of foliar applications of nitric oxide and spermidine on chlorophyll fluorescence, photosynthesis and antioxidant enzyme activities of citrus seedlings under salinity stress. Photosynthetica 56 (4):1313–25. doi: 10.1007/s11099-018-0839-z.
  • Kram, N. A., N. Hafeez, M. Farid-Ul-Haq, A. Ahmad, M. Sadiq, and M. Ashraf. 2020. Foliage application and seed priming with nitric oxide causes mitigation of salinity induced metabolic adversaries in broccoli (Brassica oleracea L.) plants. Acta Physiologiae Plantarum 42 (10):1–9. doi: 10.1007/s11738-020-03140-x.
  • Kurepin, L. V., A. G. Ivanov, M. Zaman, R. P. Pharis, V. Hurry, and N. Hüner. 2017. Interaction of glycine betaine and plant hormones: Protection of the photosynthetic apparatus during abiotic stress. Photosynthesis Structures, Mechanisms, and Applications, ed. H. Hou, M. Najafpour, G. Moore, and S. Allakhverdiev, 185–202. Cham: Springer. doi: 10.1007/978-3-319-48873-8_9.
  • Lalinia, A. A., N. M. Hoseini, M. Galostian, S. E. Bahabadi, and M. M. Khameneh. 2012. Echophysiological impact of water stress on growth and development of mungbean. The International Journal of Agronomy and Plant Production 3:599–607.
  • Lee, H. J., J. H. Lee, S. G. Lee, S. An, H. S. Lee, C. K. Choi, and S. K. Kim. 2019. Foliar application of biostimulants affects physiological responses and improves heat stress tolerance in Kimchi cabbage. Horticulture, Environment, and Biotechnology 60 (6):841–51. doi: 10.1007/s13580-019-00193-x.
  • Li, X., Y. Li, G. J. Ahammed, X. N. Zhang, L. Ying, L. Zhang, P. Yan, L. P. Zhang, Q. Y. Li, and W. Y. Han. 2019. RBOH1-dependent apoplastic H2O2 mediates epigallocatechin-3-gallate-induced abiotic stress tolerance in Solanum lycopersicum L. Environmental and Experimental Botany 161:357–66. doi: 10.1016/j.envexpbot.2018.11.013.
  • Li, X., S. Wang, X. Chen, Y. Cong, J. Cui, Q. Shi, H. Liu, and M. Diao. 2022. The positive effects of exogenous sodium nitroprusside on the plant growth, photosystem II efficiency and Calvin cycle of tomato seedlings under salt stress. Scientia Horticulturae 299:111016. doi: 10.1016/j.scienta.2022.111016.
  • López-Carrión, A. I., R. Castellano, M. A. Rosales, J. M. Ruiz, and L. Romero. 2008. Role of nitric oxide under saline stress: Implications on proline metabolism. Biologia Plantarum 52 (3):587–91. doi: 10.1007/s10535-008-0117-1.
  • Manai, J., T. Kalai, H. Gouia, and F. J. Corpas. 2014. Exogenous nitric oxide (NO) ameliorates salinity-induced oxidative stress in tomato (Solanum lycopersicum) plants. Journal of Soil Science and Plant Nutrition 14:34. doi: 10.4067/S0718-95162014005000034.
  • Manesh, A. K., M. Armin, and M. J. Moeini. 2013. The effect of sulfur application on yield and yield components of corn in two different planting methods in saline conditions. International Journal of Agronomy and Plant Production.4 (7):1474–8.
  • Maroco, J. P., M. L. Rodrigues, C. Lopes, and M. M. Chaves. 2002. Limitations to leaf photosynthesis in field-grown grapevine under drought-metabolic and modelling approaches. Functional Plant Biology 29 (4):451–9. doi: 10.1071/PP01040.
  • Marvi, H., M. Heidari, and M. Armin. 2011. Physiological and biochemical responses of eight wheat cultivars under salinity stress. Journal Agriculturae Biology Science 6:35–40.
  • Minazadeh, R., R. Karimi, and B. Mohammad-Parast. 2018. The effect of foliar nutrition of potassium sulfate on morpho-physiological indices of grapevine under salinity stress. Iranian Journal of Plant Biology 10 (3):83–106.
  • Mohasseli, V., and S. Sadeghi. 2019. Exogenously applied sodium nitroprusside improves physiological attributes and essential oil yield of two drought susceptible and resistant specie of Thymus under reduced irrigation. Industrial Crops and Products 130:130–6. doi: 10.1016/j.indcrop.2018.12.058.
  • Mudgal, V., N. Madaan, and A. Mudgal. 2010. Biochemical mechanisms of salt tolerance in plants. International Journal of Botany 6 (2):136–43. doi: 10.3923/ijb.2010.136.143.
  • Munns, R. 2005. Genes and salt tolerance: Bringing them together. The New Phytologist 167 (3):645–63. doi: 10.1111/j.1469-8137.2005.01487.x.
  • Munns, R., D. A. Day, W. Fricke, M. Watt, B. Arsova, B. J. Barkla, J. Bose, C. S. Byrt, Z.-H. Chen, K. J. Foster, et al. 2020. Energy costs of salt tolerance in crop plants. The New Phytologist 225 (3):1072–90. doi: 10.1111/nph.15864.
  • Munns, R., and M. Tester. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59 (1):651–81. doi: 10.1146/annurev.arplant.59.032607.092911.
  • Nabi, R. B. S., R. Tayade, A. Hussain, K. P. Kulkarni, Q. M. Imran, B. G. Mun, and B. W. Yun. 2019. Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environmental and Experimental Botany 161:120–33. doi: 10.1016/j.envexpbot.2019.02.003.
  • Naveed, M., H. Sajid, A. Mustafa, B. Niamat, Z. Ahmad, M. Yaseen, M. Kamran, M. Rafique, S. Ahmar, and J. T. Chen. 2020. Alleviation of salinity-induced oxidative stress, improvement in growth, physiology and mineral nutrition of canola (Brassica napus L.) through calcium-fortified composted animal manure. Sustainability 12 (3):846. doi: 10.3390/su12030846.
  • Negrão, S., S. M. Schmöckel, and M. Tester. 2017. Evaluating physiological responses of plants to salinity stress. Annals of Botany 119 (1):1–11. doi: 10.1093/aob/mcw191.
  • Pirasteh-Anosheh, H., Y. Emam, M. J. Rousta, and M. Ashraf. 2017. Salicylic acid induced salinity tolerance through manipulation of ion distribution rather than ion accumulation. Journal of Plant Growth Regulation 36 (1):227–39. doi: 10.1007/s00344-016-9633-y.
  • Qin, H., and R. Huang. 2020. The phytohormonal regulation of Na+/K+ and reactive oxygen species homeostasis in rice salt response. Molecular Breeding 40 (5):47. doi: 10.1007/s11032-020-1100-6.
  • Roychoudhury, A., S. Basu, S. N. Sarkar, and D. N. Sengupta. 2008. Comparative physiological and molecular responses of a common aromatic indica rice cultivar to high salinity with non-aromatic indica rice cultivars. Plant Cell Reports 27 (8):1395–410. doi: 10.1007/s00299-008-0556-3.
  • Roychoudhury, A., A. Singh, T. Aftab, P. Ghosal, and N. Banik. 2021. Seedling priming with sodium nitroprusside rescues Vigna radiata from salinity stress-induced oxidative damages. Journal of Plant Growth Regulation 40 (6):2454–64. doi: 10.1007/s00344-021-10328-z.
  • Sabagh, A. E. L., S. Sorour, A. Ragab, H. Saneoka, and M. S. Islam. 2017. The effect of exogenous application of proline and glycine betaineon the nodule activity of soybean under saline condition. Journal of Agriculture Biotechnology 2 (01):1–5.
  • Sairam, R. K., V. Chandrasekhar, and G. C. Srivastava. 2001. Comparison of hexaploid and tetraploid wheat cultivars in their responses to water stress. Biologia Plantarum 44 (1):89–94. doi: 10.1023/A:1017926522514.
  • Sarropoulou, V., K. Dimassi-Theriou, and I. Therios. 2014. Ιn vitro plant regeneration from leaf explants of the cherry rootstocks CAB-6P, Gisela 6, and MxM 14 using sodium nitroprusside. In Vitro Cellular & Developmental Biology – Plant 50 (2):226–34. doi: 10.1007/s11627-013-9565-1.
  • Sarropoulou, V., and E. Maloupa. 2017. Effect of the NO donor “sodium nitroprusside”(SNP), the ethylene inhibitor “cobalt chloride”(CoCl2) and the antioxidant vitamin E “α-tocopherol” on in vitro shoot proliferation of Sideritis raeseri Boiss. & Heldr. subsp. raeseri. Plant Cell, Tissue and Organ Culture 128 (3):619–29. doi: 10.1007/s11240-016-1139-6.
  • SAS Institute Inc. 2011. SAS/IML® 9.3 User’s Guide. Cary, NC: SAS Institute Inc.
  • Sharma, A., B. Shahzad, A. Rehman, R. Bhardwaj, M. Landi, and B. Zheng. 2019. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24 (13):2452. doi: 10.3390/molecules24132452.
  • Shelden, M. C., S. E. Gilbert, and S. D. Tyerman. 2020. A laser ablation technique maps differences in elemental composition in roots of two barley cultivars subjected to salinity stress. The Plant Journal 101 (6):1462–73. doi: 10.1111/tpj.14599.
  • Shi, Q., F. Ding, X. Wang, and M. Wei. 2007. Exogenous nitric oxide protects cucumber roots against oxidative stress induced by salt stress. Plant Physiology and Biochemistry 45 (8):542–50. doi: 10.1016/j.plaphy.2007.05.005.
  • Siddiqui, M. H., S. Alamri, Q. D. Alsubaie, H. M. Ali, M. N. Khan, A. Al-Ghamdi, A. A. Ibrahim, and A. Alsadon. 2020. Exogenous nitric oxide alleviates sulfur deficiency-induced oxidative damage in tomato seedlings. Nitric Oxide 94:95–107. doi: 10.1016/j.niox.2019.11.002.
  • Sivritepe, N., H. O. Sivritepe, H. Celik, and A. V. Katkat. 2010. Salinity responses of grafted grapevines: Effects of scion and rootstock genotypes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38 (3):193–201.
  • Soliman, H. I. A Alhady, and M. R. A. 2017. Evaluation of salt tolerance ability in some fig (Ficus carica L.) cultivars using tissue culture technique. Journal of Applied Biology and Biotechnology 5 (6):29–39.
  • Tahanian, H., A. Ebadi, M. Shahbazi, and H. Lesani. 2016. Elements distribution (K+, Na+ & Cl−1) in some grapevine genotypes (Vitis vinifera L.) under salt stress. Iranian Journal of Horticultural Science 47 (1):1–9.
  • Tregeagle, J. M., J. M. Tisdall, M. Tester, and R. R. Walker. 2010. Cl−1 uptake, transport and accumulation in grapevine rootstocks of differing capacity for Cl−1 exclusion. Functional Plant Biology 37 (7):665–73. doi: 10.1071/FP09300.
  • Walker, R. R., and D. H. Blackmore. 2012. Potassium concentration and pH inter relationships in grape juice and wine of Chardonnay and Shiraz from a range of rootstocks in different environments. Australian Journal of Grape and Wine Research 18 (2):183–93. doi: 10.1111/j.1755-0238.2012.00189.x.
  • Wani, S. H., V. Kumar, T. Khare, R. Guddimalli, M. Parveda, K. Solymosi, P. Suprasanna, and P. B. Kavi-Kishor. 2020. Engineering salinity tolerance in plants: Progress and prospects. Planta 251 (4):76. doi: 10.1007/s00425-020-03366-6.
  • Wu, G. Q., Q. Z. Shui, C. M. Wang, J. L. Zhang, H. J. Yuan, S. J. Li, and Z. J. Liu. 2015. Characteristics of Na+ uptake in sugar beet (Beta vulgaris L.) seedlings under mild salt conditions. Acta Physiologiae Plantarum 37 (4):1–13. doi: 10.1007/s11738-015-1816-9.
  • Wu, X., W. Zhu, H. Zhang, H. Ding, and H. J. Zhang. 2011. Exogenous nitric oxide protects against salt-induced oxidative stress in the leaves from two genotypes of tomato (Lycopersicom esculentum Mill.). Acta Physiologiae Plantarum 33 (4):1199–209. doi: 10.1007/s11738-010-0648-x.
  • Ya’Acov, L. Y., and E. Haramaty. 1996. The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn. foliage. Journal of Plant Physiology 148 (3-4):258–63. doi: 10.1016/S0176-1617(96)80251-3.
  • Yancey, P. H. 2005. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. The Journal of Experimental Biology 208 (Pt 15):2819–30. doi: 10.1242/jeb.01730.
  • Yi, Z., S. Li, Y. Liang, H. Zhao, L. Hou, S. Yu, and G. J. Ahammed. 2018. Effects of exogenous spermidine and elevated CO2 on physiological and biochemical changes in tomato plants under iso-osmotic salt stress. Journal of Plant Growth Regulation 37 (4):1222–34. doi: 10.1007/s00344-018-9856-1.
  • Yildirim, E., H. Karlidag, and M. Turan. 2009. Mitigation of salt stress in strawberry by foliar K+, Ca+2 and Mg+2 nutrient supply. Plant, Soil and Environment 55 (5):213–21. doi: 10.17221/383-PSE.
  • Zafar, S., M. Y. Ashraf, M. Niaz, A. Kausar, and J. Hussain. 2015. Evaluation of wheat genotypes for salinity tolerance using physiological indices as screening tool. Pakistan Journal of Botany 47 (2):397–405.
  • Zaman, M., S. A. Shahid, and L. Heng. 2018. Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques, 164. Vienna, Switzerland: Springer Nature.
  • Zeeshan, M., M. Lu, S. Sehar, P. Holford, and F. Wu. 2020. Comparison of biochemical, anatomical, morphological, and physiological responses to salinity stress in wheat and barley genotypes deferring in salinity tolerance. Agronomy 10 (1):127. doi: 10.3390/agronomy10010127.
  • Zhang, X., R. R. Walker, R. M. Stevens, and L. D. Prior. 2002. Yield salinity relationships of different grapevine (Vitis vinifera L.) scion- rootstock combinations. Australian Journal of Grape and Wine Research 8 (3):150–6. doi: 10.1111/j.1755-0238.2002.tb00250.x.
  • Zhang, Y., L. Wang, Y. Liu, Q. Zhang, Q. Wei, and W. Zhang. 2006. Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta 224 (3):545–55. doi: 10.1007/s00425-006-0242-z.
  • Zhang, Y., Q. Yao, Y. Shi, X. Li, L. Hou, G. Xing, and G. J. Ahammed. 2020. Elevated CO2 improves antioxidant capacity, ion homeostasis, and polyamine metabolism in tomato seedlings under Ca (NO3)2– induced salt stress. Scientia Horticulturae 273:109644. doi: 10.1016/j.scienta.2020.109644.
  • Zhou-Tsang, A., Y. Wu, S. W. Henderson, A. R. Walker, A. R. Borneman, R. R. Walker, and M. Gilliham. 2021. Grapevine salt tolerance. Australian Journal of Grape and Wine Research 27 (2):149–68. doi: 10.1111/ajgw.12487.
  • Zhu, S., M. Liu, and J. Zhou. 2006. Inhibition by nitric oxide of ethylene biosynthesis and lipoxygenase activity in peach fruit during storage. Postharvest Biology and Technology 42 (1):41–8. doi: 10.1016/j.postharvbio.2006.05.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.