98
Views
4
CrossRef citations to date
0
Altmetric
Basic Research

Renal ultrastructural alterations induced by various preparations of mefenamic acid

, , , & ORCID Icon
Pages 130-140 | Received 11 Nov 2019, Accepted 14 Jan 2020, Published online: 22 Jan 2020

References

  • Cimolai N. The potential and promise of mefenamic acid. Expert Rev Clin Pharmacol. 2013;6(3):289–305. doi:10.1586/ecp.13.15.
  • Asif M. Study of anthranylic acid derivatives: mefenamic acid and its various analogues. Am J Med Stud. 2014;2:24–30.
  • Macintyre IMC, Fink P, McGrouther R, Spence A, Zarifa Z. A single-blind study of naproxen sodium and mefenamic acid in minor trauma. Scott Med J. 1984;29(4):234–237. doi:10.1177/003693308402900406.
  • Ozgoli G, Goli M, Moattar F. Comparison of effects of ginger, mefenamic acid, and ibuprofen on pain in women with primary dysmenorrhea. J Altern Complement Med. 2009;15(2):129–132. doi:10.1089/acm.2008.0311.
  • Venkataraman H, Den Braver MW, Vermeulen NPE, Commandeur JNM. Cytochrome P450-mediated bioactivation of mefenamic acid to quinoneimine intermediates and inactivation by human glutathione S-transferases. Chem Res Toxicol. 2014;27(12):2071–2081. doi:10.1021/tx500288b.
  • Brunner K, Burger HR, Greminger P, Streuli R. Mefenamic acid (Ponstan)-induced acute interstitial nephritis with reversible, severe, non-oliguric renal failure. Schweiz Med Wochenschr. 1985; 115(48):1730–1734.
  • Onay OS, Erçoban HS, Bayrakci US, Melek E, Cengiz N, Baskin E. Acute, reversible nonoliguric renal failure in two children associated with analgesic-antipyretic drugs. Pediatr Emerg Care. 2009;25(4):263–266. doi:10.1097/PEC.0b013e31819e38d4.
  • Woods KL, Michael J. Mefenamic acid nephropathy. Br Med J (Clin Res Ed). 1981;282(6274):1471. doi:10.1136/bmj.282.6274.1471.
  • Somchit MN, Sanat F, Hui GE, Wahab SI, Ahmad Z. Mefenamic acid induced nephrotoxicity: an animal model. Adv Pharm Bull. 2014;4(4):401. doi:10.5681/apb.2014.047.
  • Thanh NTK, Stevenson G, Obatomi DK, Aicher B, Baumeister M, Bach PH. Urinary lipid changes during the development of chemically-induced renal papillary necrosis: a study using mefenamic acid and N-phenylanthranilic acid. biomarkers. 2001;6(6):417–427. doi:10.1080/13547500110057407.
  • Jarrar QB, Hakim MN, Cheema MS, Zakaria ZA. Comparative ultrastructural hepatic alterations induced by free and liposome-encapsulated mefenamic acid. Ultrastruct Pathol. 2017;41:5. doi:10.1080/01913123.2017.1349850.
  • Chaffey N, Hayat MA. 2000. Principles and Techniques of Electron Microscopy: Biological Applications. 4th. 543. Cambridge: Cambridge University Press. {pound}65 (Hardback); 2001. doi:10.1006/anbo.2001.1367.
  • Wyffels JT. Principles and techniques of electron microscopy: biological applications, Fourth Edition, by M. A. Hayat. Microsc Microanal. 2001;7(1):66. doi:10.1017.S1431927601010066.
  • Hoitsma AJ, Wetzels JFM, Koene RAP. Drug-induced nephrotoxicity. Drug Saf. 1991;6(2):131–147. doi:10.2165/00002018-199106020-00004.
  • Kim SY, Moon A. Drug-induced nephrotoxicity and its biomarkers. Biomol Ther (Seoul). 2012;20(3):268. doi:10.4062/biomolther.2012.20.3.268.
  • Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36–48. doi:10.1016/j.addr.2012.09.037.
  • Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: an update review. Curr Drug Deliv. 2007;4(4):297–305. doi:10.2174/156720107782151269.
  • Ciolli S, Leoni F, Casini C, Breschi C, Bosi A. Liposomal doxorubicin (Myocet®) enhance the efficacy of bortezomib, dexamethasone plus thalidomide in refractory myeloma. Blood. 2006;108(11):5087LP–5087. http://www.bloodjournal.org/content/108/11/5087.abstract.
  • Hu K, Zhu L, Liang H, Hu F, Feng J. Improved antitumor efficacy and reduced toxicity of liposomes containing bufadienolides. Arch Pharm Res. 2011;34(9):1487. doi:10.1007/s12272-011-0910-9.
  • Daemen T, Hofstede G, Ten Kate MT, Bakker-Woudenberg IAJM, Scherphof GL. Liposomal doxorubicin-induced toxicity: depletion and impairment of phagocytic activity of liver macrophages. Int J Cancer. 1995;61:(5). 716–721. doi:10.1002/ijc.2910610520.
  • Karlowsky JA, Zhanel GG. Concepts on the use of liposomal antimicrobial agents: applications for aminoglycosides. Clin Infect Dis. 1992;15(4):654–667. doi:10.1093/clind/15.4.654.
  • Jarrar QB, Hakim MN, Manraj C, Zainul Z. In vitro characterization and in vivo performance of mefenamic acid-sodium diethyldithiocarbamate based liposomes. Brazilian J Pharm Sci. 2019;55. doi:10.1590/s2175-97902019000117870.
  • Boelsterli UA. Mechanisms underlying the hepatotoxicity of nonsteroidal antiinflammatory drugs. Drug-Induced Liver Disease. Elsevier. 2013;343–367.
  • Eguchi Y, Shimizu S, Tsujimoto Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res. 1997;57:1835–1840.
  • Tiwari BS, Belenghi B, Levine A. Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol. 2002;128(4):1271–1281. doi:10.1104/pp.010999.
  • Uyemura SA, Santos AC, Mingatto FE, Jordani MC, Curti C. Diclofenac sodium and mefenamic acid: potent inducers of the membrane permeability transition in renal cortex mitochondria. Arch Biochem Biophys. 1997;342(2):231–235. doi:10.1006/abbi.1997.9985.
  • Liu J, Shigenaga MK, Liang-Junyan Y, Mori A, Ames BN. Antioxidant activity of diethyldithiocarbamate. Free Radic Res. 1996;24(6):461–472. doi:10.3109/10715769609088045.
  • Chang TKH, Gonzalez FJ, Waxman DJ. Evaluation of triacetyloleandomycin, α-nasymphthoflavone and diethyldithiocarbamate as selective chemical probes for inhibition of human cytochromes P450. Arch Biochem Biophys. 1994;311(2):437–442. doi:10.1006/abbi.1994.1259.
  • Somani SM, Ravi R, Rybak LP. Diethyldithiocarbamate protection against cisplatin nephrotoxicity: antioxidant system. Drug Chem Toxicol. 1995;18(2–3):151–170. doi:10.3109/01480549509014318.
  • DeWoskin RS, Riviere JE. Cisplatin-induced loss of kidney copper and nephrotoxicity is ameliorated by single dose diethyldithiocarbamate, but not mesna. Toxicol Appl Pharmacol. 1992;112(2):182–189. doi:10.1016/0041-008X(92)90186-V.
  • Hidaka S, Funakoshi T, Shimada H, Tsuruoka M, Kojima S. Comparative effects of diethyldithiocarbamate andn-benzyl-d-glucamine dithiocarbamate oncis-diamminedichloroplatinum-induced toxicity in kidney and gastrointestinal tract in rats. J Appl Toxicol. 1995;15(4):267–273. doi:10.1002/(ISSN)1099-1263.
  • Masuda Y, Nakayama N. Protective action of diethyldithiocarbamate and carbon disulfide against renal injury induced by chloroform in mice. Biochem Pharmacol. 1983;32(21):3127–3135. doi:10.1016/0006-2952(83)90194-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.