163
Views
3
CrossRef citations to date
0
Altmetric
Basic Research

Improved spinal cord gray matter morphology induced by Spirulina platensis following spinal cord injury in rat models

, &
Pages 359-371 | Received 14 Apr 2020, Accepted 02 Jul 2020, Published online: 20 Jul 2020

References

  • Witiw CD, Fehlings MG. Acute spinal cord injury. J Spinal Disord Tech. 2015;28(6):202–210. doi:10.1097/BSD.0000000000000287.
  • Wyndaele M, Wyndaele JJ. Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? Spinal Cord. 2006;44(9):523–529. doi:10.1038/sj.sc.3101893.
  • Ibrahim A, Lee KY, Kanoo LL, et al. Epidemiology of spinal cord injury in Hospital Kuala Lumpur. Spine (Phila Pa 1976). 2013;38(5):419–424. doi:10.1097/BRS.0b013e31826ef594.
  • Young W. Molecular and Cellular Mechanisms of Spinal Cord Injury Therapies. In: Kalb R, Strittmatter S, eds.. Neurobiology of Spinal Cord Injury. Totowa NJ: Humana Press; 2000:241–276.
  • Sharif-Alhoseini MR, Vafa M. Animal Models in Traumatic Spinal Cord Injury; 2014. doi:10.5772/57189.
  • Talac R, Friedman JA, Moore MJ, et al. Animal models of spinal cord injury for evaluation of tissue engineering treatment strategies. Biomaterials. 2004;25(9):1505–1510. doi:10.1016/S0142-9612(03)00497-6.
  • Nakae A, Nakai K, Yano K, et al. The animal model of spinal cord injury as an experimental pain model. J Biomed Biotechnol. 2011;2011:939023. doi:10.1155/2011/939023.
  • Lee D-H, Lee JK. Animal models of axon regeneration after spinal cord injury. Neurosci Bull. 2013;29(4):436–444. doi:10.1007/s12264-013-1365-4.
  • Menekse G, Daglioglu E, Nacar OA, et al. The neuroprotective effects of rituximab in rat spinal cord injury model: an immunohistochemical study. Turk Neurosurg. 2013;23(6):783–790. doi:10.5137/1019-5149.JTN.8051-13.0.
  • Kwon BK, Okon, E. B, Plunet, W, et al. A systematic review of directly applied biologic therapies for acute spinal cord injury. J Neurotrauma. 2011;28(8):1589–1610.
  • Yoon DH, Kim YS, Young W. Therapeutic time window for methylprednisolone in spinal cord injured rat. Yonsei Med J. 1999;40(4):313–320. doi:10.3349/ymj.1999.40.4.313.
  • Koyanagi I, Tator CH. Effect of a single huge dose of methylprednisolone on blood flow, evoked potentials, and histology after acute spinal cord injury in the rat. Neurol Res. 1997;19(3):289–299. doi:10.1080/01616412.1997.11740815.
  • Short D, El Masry W, Jones P. High dose methylprednisolone in the management of acute spinal cord injury-a systematic review from a clinical perspective. Spinal Cord. 2000;38(5):273–286. doi:10.1038/sj.sc.3100986.
  • Sayer FT, Kronvall E, Nilsson OG. Methylprednisolone treatment in acute spinal cord injury: the myth challenged through a structured analysis of published literature. Spine J. 2006;6(3):335–343. doi:10.1016/j.spinee.2005.11.001.
  • Chamorro G, Salazar M, Favila L, et al. [Pharmacology and toxicology of Spirulina alga]. Rev Invest Clin. 1996;48(5):389–399.
  • Tranquille N, Emeis JJ, de Chambure D, et al. Spirulina acceptability trials in rats. A study for the “Melissa” life-support system. Adv Space Res. 1994;14(11):167–170. doi:10.1016/0273-1177(94)90293-3.
  • Naidu KA, Sarada R, Manoj G, et al. Toxicity assessment of phycocyanin - a blue colorant from blue green alga spirulina platensis. Food Biotechnol. 1999;13(1):51–66. doi:10.1080/08905439609549961.
  • Becker E, Venkataraman L. Production and utilization of the blue-green alga Spirulina in India. Biomass. 1984;4(2):105–125. doi:10.1016/0144-4565(84)90060-X.
  • Abdullahi D, Ahmad Annuar A, Sanusi J. Neuroprotective potential of Spirulina platensis on lesioned spinal cord corticospinal tract under experimental conditions in rat models. Ultrastruct Pathol. 2019;43(6):1–17.
  • Gemma C, Mesches MH, Sepesi B, et al. Diets enriched in foods with high antioxidant activity reverse age-induced decreases in cerebellar β-adrenergic function and increases in proinflammatory cytokines. J Neurosci. 2002;22(14):6114–6120. doi:10.1523/JNEUROSCI.22-14-06114.2002.
  • Shih C-M, Cheng S-N, Wong C-S, et al. Antiinflammatory and antihyperalgesic activity of C-phycocyanin. Anesth Analg. 2009;108(4):1303–1310. doi:10.1213/ane.0b013e318193e919.
  • Chattopadhyaya I, Gupta S, Mohammed A, et al. Neuroprotective effect of Spirulina fusiform and amantadine in the 6-OHDA induced Parkinsonism in rats. BMC Complement Altern Med. 2015;15(1):296. doi:10.1186/s12906-015-0815-0.
  • Aziz I, Che Ramli MD, Mohd Zain NS, et al. Behavioral and histopathological study of changes in spinal cord injured rats supplemented with spirulina platensis. Evid Based Complement Alternat Med. 2014;2014:871657. doi:10.1155/2014/871657.
  • Wang Y, Chang C-F, Chou J, et al. Dietary supplementation with blueberries, spinach, or spirulina reduces ischemic brain damage. Exp Neurol. 2005;193(1):75–84. doi:10.1016/j.expneurol.2004.12.014.
  • Nisha Patro AS, Kariaya K, Patro I. Spirulina platensis protects neurons via suppression of glial activation and peripheral sensitization leading to restoration of motor function in collagen-induced arthritic rats. Indian J Exp Biol. 2011;49:739–748.
  • Thaakur S, Sravanthi R. Neuroprotective effect of Spirulina in cerebral ischemia-reperfusion injury in rats. J Neural Transm (Vienna). 2010;117(9):1083–1091. doi:10.1007/s00702-010-0440-5.
  • Svitlana Garbuzova-Davis PCB. Short communication: neuroprotective effect of spirulina in a mouse model of ALS. Open Tissue Eng Regen Med J. 2010;3:36–41. doi:10.2174/1875043501003010036.
  • Pabon MM, Jernberg JN, Morganti J, et al. A spirulina-enhanced diet provides neuroprotection in an alpha-synuclein model of Parkinson’s disease. PLoS One. 2012;7(9):e45256. doi:10.1371/journal.pone.0045256.
  • Bermejo-Bescós P, Piñero-Estrada E, Villar Del Fresno ÁM. Neuroprotection by Spirulina platensis protean extract and phycocyanin against iron-induced toxicity in SH-SY5Y neuroblastoma cells. Toxicol Vitro. 2008;22(6):1496–1502. doi:10.1016/j.tiv.2008.05.004.
  • Stromberg I, Gemma C, Vila J, et al. Blueberry- and spirulina-enriched diets enhance striatal dopamine recovery and induce a rapid, transient microglia activation after injury of the rat nigrostriatal dopamine system. Exp Neurol. 2005;196(2):298–307. doi:10.1016/j.expneurol.2005.08.013.
  • Romay C, Gonzalez R, Ledon N, et al. C-phycocyanin: A biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr Protein Pept Sci. 2003;4(3):207–216. doi:10.2174/1389203033487216.
  • Pérez-Juárez A, Chamorro G, Alva-Sánchez C, et al. Neuroprotective effect of Arthrospira (Spirulina) platensis against kainic acid-neuronal death. Pharm Biol. 2016;54(8):1–5.
  • Abdullahi D, Annuar AA, Sanusi J. Improved β-catenin detection in spinal cord tissue sections: autofluorescence quenching. Neurosci Res Notes. 2020;3(2):4–14. doi:10.31117/neuroscirn.v3i2.49.
  • Kaptanoglu E,  Caner, H. H, Sürücü, H. S, et al. Effect of mexiletine on lipid peroxidation and early ultrastructural findings in experimental spinal cord injury. J Neurol Neurosurg Spine. 1999;91(2):200–204.
  • Kaptanoglu E, Tuncel M, Palaoglu S, et al. Comparison of the effects of melatonin and methylprednisolone in experimental spinal cord injury. J Neurol Neurosurg Spine. 2000;93(1):77–84.
  • Kaptanoglu E, Palaoglu, S, Surucu, H. S, et al. Ultrastructural scoring of graded acute spinal cord injury in the rat. J Neurol Neurosurg Spine. 2002;97(1):49–56.
  • Kaptanoglu E, Sen S, Beskonakli E, et al. Antioxidant actions and early ultrastructural findings of thiopental and propofol in experimental spinal cord injury. J Neurosurg Anesthesiol. 2002;14(2):114–122. doi:10.1097/00008506-200204000-00005.
  • Kaptanoglu E, Beskonakli E, Okutan O, et al. Effect of magnesium sulphate in experimental spinal cord injury: evaluation with ultrastructural findings and early clinical results. J Clin Neurosci. 2003;10(3):329–334. doi:10.1016/S0967-5868(03)00031-6.
  • Kaptanoglu E, Solaroglu I, Okutan O, et al. Erythropoietin exerts neuroprotection after acute spinal cord injury in rats: effect on lipid peroxidation and early ultrastructural findings. Neurosurg Rev. 2004;27(2):113–120. doi:10.1007/s10143-003-0300-y.
  • Li H-B, Yue Z-D, Zhao H-W, et al. Pathological features of mitochondrial ultrastructure predict susceptibility to Post-TIPS hepatic encephalopathy. Can J Gastroenterol Hepatol. 2018;2018:1–9. doi:10.1155/2018/4671590.
  • Pemberton K, Mersman B, Xu F. Using ImageJ to assess neurite outgrowth in mammalian cell cultures: research data quantification exercises in undergraduate neuroscience lab. J Undergraduate Neurosci Educ. 2018;16:A186.
  • Arena ET, Rueden CT, Hiner MC, et al. Quantitating the cell: turning images into numbers with ImageJ. Wiley Interdisciplinary Rev. 2017;6(2):e260. doi:10.1002/wdev.260.
  • Schneider H, Dralle J. Ultrastructural changes in the rat spinal cord after temporary occlusion of the thoracic aorta. Acta Neuropathol. 1973;26(4):301–315. doi:10.1007/BF00688078.
  • Ismailoglu Ö, Oral B, Tomruk Ö, et al. Neuroprotective effects of raloxifene on experimental spinal cord injury in rats. Am J Med Sci. 2013;345(1):39–44. doi:10.1097/MAJ.0b013e3182522651.
  • Tator CH, Fehlings MG. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg. 1991;75(1):15–26. doi:10.3171/jns.1991.75.1.0015.
  • Tator CH. Review of experimental spinal cord injury with emphasis on the local and systemic circulatory effects. Neurochirurgie. 1991;37:291–302.
  • Newman MF, Fleisher LA, Fink MP. Perioperative Medicine: Managing for Outcome. Philadelphia: Elsevier Health Sciences; 2008.
  • Yu W, He D. Current trends in spinal cord injury repair. Eur Rev Med Pharmacol Sci. 2015;19:3340–3344.
  • Raghupathi R, Graham DI, McIntosh TK. Apoptosis after traumatic brain injury. J Neurotrauma. 2000;17(10):927–938. doi:10.1089/neu.2000.17.927.
  • Anderson DK, Hall ED. Pathophysiology of spinal cord trauma. Ann Emerg Med. 1993;22(6):987–992. doi:10.1016/S0196-0644(05)82739-8.
  • Chamorro G, Salazar M, Araújo KGDL, et al. [Update on the pharmacology of Spirulina (Arthrospira), an unconventional food].. Arch Latinoam Nutr. 2002;52(3):232–240.
  • Miranda M, Cintra RG, Barros SBM, et al. Antioxidant activity of the microalga Spirulina maxima. Braz J Med Biol Res. 1998;31(8):1075–1079. doi:10.1590/S0100-879X1998000800007.
  • Premkumar K, Pachiappan A, Abraham SK, et al. Effect of Spirulina fusiformis on cyclophosphamide and mitomycin-C induced genotoxicity and oxidative stress in mice. Fitoterapia. 2001;72(8):906–911. doi:10.1016/S0367-326X(01)00340-9.
  • Estrada JP, Bescos PB, Del Fresno AV. Antioxidant activity of different fractions of Spirulina platensis protean extract. Il farmaco. 2001;56(5):497–500. doi:10.1016/S0014-827X(01)01084-9.
  • Liu Y, Wang X, Lu -C-C, et al. Repulsive Wnt signaling inhibits axon regeneration after CNS injury. J Neurosci. 2008;28(33):8376–8382. doi:10.1523/JNEUROSCI.1939-08.2008.
  • Cuzzocrea S, Genovese T, Mazzon E, et al. Glycogen synthase kinase-3β inhibition reduces secondary damage in experimental spinal cord trauma. J Pharmacol Exp Ther. 2006;318(1):79–89. doi:10.1124/jpet.106.102863.
  • Dill J, Wang H, Zhou F, et al. Inactivation of glycogen synthase kinase 3 promotes axonal growth and recovery in the CNS. J Neurosci. 2008;28(36):8914–8928. doi:10.1523/JNEUROSCI.1178-08.2008.
  • Yin ZS, Zu B, Zhang H. Repair effect of Wnt3a protein on the contused adult rat spinal cord. Neurol Res. 2008;30(30):480–486. doi:10.1179/174313208X284133.
  • Suh HI, Min J, Choi KH, et al. Axonal regeneration effects of Wnt3a-secreting fibroblast transplantation in spinal cord-injured rats. Acta Neurochir (Wien). 2011;153(5):1003–1010. doi:10.1007/s00701-011-0945-1.
  • SuYEN GG. Effects of ozone on spinal cord recovery via the Wnt/β-Catenin pathway following spinal cord injury in rats. Turk Neurosurg. 2017;;27(6):946–951.
  • van Amerongen R, Mikels A, Nusse R. Alternative wnt signaling is initiated by distinct receptors. Sci Signal. 2008;1(35):p. re9. doi:10.1126/scisignal.135re9.
  • Curinga G, Smith GM. Molecular/genetic manipulation of extrinsic axon guidance factors for CNS repair and regeneration. Exp Neurol. 2008;209(2):333–342. doi:10.1016/j.expneurol.2007.06.026.
  • Ciani L, Salinas PC. WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev Neurosci. 2005;6(5):351–362. doi:10.1038/nrn1665.
  • Ahmad-Annuar A, Ciani L, Simeonidis I, et al. Signaling across the synapse: a role for Wnt and Dishevelled in presynaptic assembly and neurotransmitter release. J Cell Biol. 2006;174(1):127–139. doi:10.1083/jcb.200511054.
  • Wu G, Huang H, Abreu JG, et al. Inhibition of GSK3 Phosphorylation of β-catenin via phosphorylated pppspxs motifs of wnt coreceptor LRP6. Plos One. 2009;4(3):e4926. doi:10.1371/journal.pone.0004926.
  • Fujisawa T, et al. Genomic structure of an economically important cyanobacterium, Arthrospira (Spirulina) platensis NIES-39. DNA Res. 2010;17(2):85–103.
  • Sutherland C, Leighton IA, Cohen P. Inactivation of glycogen synthase kinase-3β by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem J. 1993;296(1):15–19. doi:10.1042/bj2960015.
  • Welsh GI, Proud C. Glycogen synthase kinase-3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation factor eIF-2B. Biochem J. 1993;294(3):625–629. doi:10.1042/bj2940625.
  • Stambolic V, Ruel L, Woodgett JR. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol. 1996;6(12):1664–1669. doi:10.1016/S0960-9822(02)70790-2.
  • Eldar-Finkelman H, Licht-Murava A, Pietrokovski S, et al. Substrate competitive GSK-3 inhibitors strategy and implications. Biochimica Et Biophysica Acta (BBA) - Proteins and Proteomics. 2010;1804(3):598–603. doi:10.1016/j.bbapap.2009.09.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.