239
Views
3
CrossRef citations to date
0
Altmetric
Basic Research

Histomorphological changes and molecular mechanisms underlying the ameliorative effect of resveratrol on the liver of silver nanoparticles-exposed rats

ORCID Icon, , , &
Pages 268-284 | Received 21 Jan 2022, Accepted 15 Apr 2022, Published online: 26 Apr 2022

References

  • Magaye R, Zhao J, Bowman L, Ding M. Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles. Ex Ther Me. 2012;4:551–561.
  • Aithal PS. Nanotechnology innovations and business opportunities: a review. Int J Manag IT Eng. 2016;6:182–204.
  • Shakir AA, Hossain AO, Abdulridha WM, Mohammed MA. Toxipathological effect of silver nanoparticles on the brain and liver of albino rats. Int J Chemn Tech Res. 2017;10:624–629.
  • Rajkumar KS, Kanipandian N, Thirumurugan R. Toxicity assessment on haemotology, biochemical and histopathological alterations of silver nanoparticles-exposed freshwater fish Labeo rohita. Appl Nanosci. 2016;6:19–29.
  • Sarhan OM, Hussein RM. Effects of intraperitoneally injected silver nanoparticles on histological structures and blood parameters in the albino rat. Int J Nanomed. 2014;9:1505–1517.
  • Peters R, Bouwmeester H, Gottardo S, et al. Nanomaterials for products and application in agriculture, feed and food. Trends Food Sci Technol. 2016;54:155–164.
  • Dayyoub E, Frant M, Pinnapireddy SR, Liefeith K, Bakowsky U. Antibacterial and antiEncrustation biodegradable polymer coating for urinary catheter. Int J Pharm. 2017;531:205–214.
  • Zhang XF, Choi YJ, Han JW, et al. Differential nanoreprotoxicity of silver nanoparticles in male somatic cells and spermatogonial stem cells. Int J Nanomedicine. 2015;10:1335–1357.
  • Sung JH, Ji JH, Park JD, et al. Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci. 2009;108(2):452–461. PMID: 19033393. doi:https://doi.org/10.1093/toxsci/kfn246.
  • Tang J, Xiong L, Wang S, et al. Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol. 2009;9:4924–4932.
  • Garza-Ocanas L, Ferrer DA, Burt J, et al. Biodistribution and long-term fate of silver nanoparticles functionalized with bovine serum albumin in rats. Metallomics Toxicol. 2010;7(1):1–20.
  • Loeschner K, Hadrup N, Qvortrup K, et al. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol. 2011;8(1):1–14.
  • Park K, Park EJ, Chun IK, et al. Bioavailability and toxicokinetics of citrate-coated silver nanoparticles in rats. Arch Pharm Res. 2011;34:153–158.
  • Kim YS, Song MY, Park JD, et al. Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol. 2010;7(1):1.
  • van der Zande M, Vandebriel RJ, Van DE, et al. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano. 2012;6(8):7427–7442.
  • Chrastina A, Schnitzer JE. Iodine-125 radiolabeling of silver nanoparticles for in vivo SPECT imaging. Int J Nanomed. 2010;5:653–659.
  • Mazen NF, Saleh EZ, Mahmoud AA, Shaalan AA. Histological and immunohistochemical study on the potential toxicity of sliver nanoparticles on the structure of the spleen in adult male albino rats. Egy J Histol. 2017;40:374–387.
  • Ahmed SM, Abdelrahman SA, Shalaby SM. Evaluating the effect of silver nanoparticles on testes of adult albino rats (histological, immunohistochemical and biochemical study). J Mol Histol. 2017;48:9–27.
  • Yu L, Tu Y, Jia X, et al. Resveratrol protects against pulmonary arterial hypertension in rats via activation of silent information regulator 1. Cell Physiol Biochem. 2017;42:55–67.
  • Shinmura K, Tamaki K, Ito K, et al. Indispensable role of endothelial nitric oxide synthase in caloric restriction-induced cardioprotection against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2015;308:H894–903.
  • Yang L, Zhang Y, Zhu M, et al. Resveratrol attenuates myocardial ischemia/reperfusion injury through up-regulation of vascular endothelial growth factor B. Free Radic Biol Med. 2016;101:1–9.
  • Wei G, Chen X, Wang G, Fan L, Wang K, Li X. Effect of resveratrol on the prevention of intra-abdominal adhesion formation in a rat model. Cell Physiol Biochem. 2016;39:33–46.
  • Attia A. Evaluation of the testicular alterations induced by silver nanoparticles in male mice: biochemical. Histol Ultrastruct Stud RJPBCS. 2014;5:1558–1589.
  • Amin Y, Hawas A, El-Batal A, Hassan S, Elsayed M. Evaluation of acute and subchronic toxicity of silver nanoparticles in normal and irradiated animals. Br J Pharmacol Toxicol. 2015;6:22–38.
  • Rahman M, Wang J, Patterson T, Saini U, Robinson B, Newport G. Expression of genes related to oxidative stress in the mouse brain after exposure to silver‐25 nanoparticles. Toxicol Lett. 2009;187(1):15–21. doi:https://doi.org/10.1016/j.toxlet.2009.01.020.
  • Tian Z, Wang J, Xu M, Wang Y, Zhang M, Zhou Y. Resveratrol improves cognitive impairment by regulating apoptosis and synaptic plasticity in streptozotocin-induced diabetic rats. Cel Phys Biochem. 2016;40:1670–1677.
  • Kara A, Unal D, Simsek N, Yucel A, Yucel N, Selli J. Ultrastructural changes and apoptotic activity in cerebellum of postmenopausal- diabetic rats: a histochemical and ultra-structural study. J Gynecol Endocrinol. 2014;30:226–231.
  • Bancroft J, Layton C. Hematoxylin and eosin. In: Suvarna SK, Layton C, Bancroft JD, eds. Theory and Practice of Histological Techniques, Ch. 10 and 11. 7th ed. Philadelphia: Churchill Livingstone of Elsevier; 2013:172–214.
  • Lee JH, Kim YS, Song KS, et al. Biopersistence of silver nanoparticles in tissues from Sprague Dawley rats. Part Fibre Toxicol. 2013;10:36.
  • Glauret A, Lewis P. Biological Specimen Preparation for Transmission Electron Microscopy. 1st. London: Portland Press; 1998.
  • Goodhew P, Humphreys J, Beanland R. Electron Microscopy and Analysis. 3rd. London: Taylor and Francis; 2001.
  • Ramos-Vara JA, Kiupel M, Baszier T, et al. Suggested guidelines for immunohistochemical techniques in veterinary diagnostic laboratories. J Vet Diagn Invest. 2008;20:393–413.
  • Young DS. Effects of Drugs on Clinical Laboratory Tests. 4th ed. Washington: AACC Press; 1995:3–16.
  • Floreani M, Petrone M, Debetto P, Palatini P. A comparison between different methods for the determination of reduced and oxidized glutathione in mammalian tissues. Free Radic Res. 1997;26:449–455.
  • Ndisang JF, Jadhav A. Heme oxygenase system enhances insulin sensitivity and glucose metabolism in streptozotocininduced diabetes. Am J Physiol Endocrinol Metab. 2009;296:829–841.
  • Quevedo AC, Lynch I, Valsami-Jones E. Silver nanoparticle induced toxicity and cell death mechanisms in embryonic zebrafish cells. Nanoscale. 2021;13:6142–6161.
  • Sardari R, Zarchi S, Talebi A, et al. Toxicological effects of silver nanoparticles in rats. Afr J Microbiol Res. 2012;6:5587–5593.
  • Lam CW. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risk. Crit Rev Toxicol. 2006;36:189–217.
  • Liu W, Zhou Q, Liu J, Fu JJ, Liu S, Jian G. Environmental and biological influences on the stability of silver nanoparticles. Chin Sci Bull. 2011;56:2009–2015.
  • Singh RP, Ramarao P. Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol Lett. 2012;213:249–259.
  • Foldbjerg R, Dang DA, Autrup H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line A549. Arch Toxicol. 2011;85:743–750.
  • Kim YJ, Rahman MM, Lee SM, et al. Assessment of in vivo genotoxicity of citrated-coated silver nanoparticles via transcriptomic analysis of rabbit liver tissue. Int J Nanomed. 2019;14:393–405.
  • Milića M, Leitingerb G, Pavičića I, et al. Cellular uptake and toxicity effects of silver nanoparticles in mammalian kidney cells. J Appl Toxicol. 2015;35:581–592.
  • Ahamed M, Siddiqui MA, Akhtar MJ, Ahmad I, Pant AB, Alhadlaq HA. Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochem Biophys Res Commun. 2010;396:578–583.
  • Kumari S, Kumari P, Panda P, et al. Biocompatible biogenic silver nanoparticles interact with caspases on an atomic level to elicit apoptosis. Nanomed. 2020;15:2119–2132.
  • Hassan OA, Saad AH, Hamouda AH. Silver nanoparticles induced multiple organ toxicity in mice. The Egy J Forens Sci Appl Toxicol. 2019;19:31–47.
  • Zhu L, Kong M, Han YP, et al. Spontaneous liver fibrosis induced by long term dietary Vitamin D deficiency in adult mice is related to chronic inflammation and enhanced apoptosis. Can J Physiol Pharmacol. 2015;93:385–394.
  • Duval F, Moreno-Cuevas JE, González-Garza MT, Rodríguez-Montalvo C, Cruz-Vega DE. Liver fibrosis and protection mechanisms action of medicinal plants targeting apoptosis of hepatocytes and hepatic stellate cells. Adv Pharmacol Sci. 2014;11: 373295.
  • Walle T. Bioavailability of resveratrol. Ann N Y Acad Sci. 2011;1215:9–15.
  • Bertelli AAE, Giovanni L, Stradi R, Urien S, Tillement JP, Bertelli A. Kinetics of trans- and cis-resveratrol (3,4,5-trihydroxystilbene) after red wine oral administration in rats. Int J Clin Pharm Res. 1996;16:77–81.
  • Abdu SB, Al-Bogami FM. Influence of resveratrol on liver fibrosis induced by dimethylnitrosamine in male rats. Saudi J Biolo Sci. 2019;26:201–209.
  • Meo SD, Reed TT, Venditti P, Victor VM. Role of ROS and RNS sources in physiological and pathological conditions. Oxi Med Cell Long. 2016;44:Article ID 1245049.
  • Azirak S, Bilgic S, Korkmaz DT, Guvenc AN, Kocaman N, Ozer MK. The protective effect of resveratrol against risperidone-induced liver damage through an action on FAS gene expression. Gen Physiol Biophys. 2019;38:215–225.
  • El-Din SH, El-Lakkany NM, Salem MB, Hammam OA, Saleh S, Botros SS. Resveratrol mitigates hepatic injury in rats by regulating oxidative stress, nuclear factor-kappa B, and apoptosis. J Adv Pharm Tech Res. 2016;7:99.
  • Bellezza I, Giambanco I, Minelli A, Donato R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res. 2018;1865:721–733.
  • Izzo C, Annunziata M, Melara G, et al. The role of resveratrol in liver disease: a comprehensive review from in vitro to clinical trials. Nutrients. 2021;13:933.
  • Oellerich MF, Potente M. FOXOs and sirtuins in vascular growth, maintenance and aging. Circ Res. 2012;110:1238–1251.
  • Chen B, Zang W, Wang J, et al. The chemical biology of sirtuins. Chem Soc Rev. 2015;44:5246–5264.
  • Nakagawa T, Guarente L. Sirtuins at a glance. J Cell Sci. 2011;124:833–838.
  • Iside C, Scafuro M, Nebbioso A, Altucci L. SIRT1 activation by natural phytochemicals: an overview. Front Pharm. 2020;11:1225.
  • Park SJ, Ahmad F, Philp A. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting camp phosphodiesterases. Cell. 2012;148:421–433.
  • Olmos Y, S´anchez-g´omez FJ, Wild B, et al. αSirT1 regulation of antioxidant genes is dependent on the formation of a FoxO3a/PGC-1α complex. Antiox Redox Sig. 2013;19:1507–1521.
  • Bobermin LD, Roppa RHA, Quincozes-Santos A. Adenosine receptors as a new target for resveratrol-mediated glioprotection. Biochimica et Biophysica acta Mol Basis Dis. 2019;1865:634–647.
  • Malaguarnera L. Influence of resveratrol on the immune response. Nutrients. 2019;11(5):946. doi:https://doi.org/10.3390/nu11050946.
  • Morgan M, Liu Z. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011;21:103–115.
  • Zheng X, O’Connor J, Huchzermeyer F, et al. Preservation of ovarian follicles reveals early evolution of avian reproductive behaviour. Nature. 2013;495(7442):507–511. doi:https://doi.org/10.1038/nature11985. Epub 2013 Mar 17. PMID: 23503663.
  • Guo R, Liu B, Wang K, Zhou S, Li W, Xu Y. Resveratrol ameliorates diabetic vascular inflammation and macrophage infiltration in db/db mice by inhibiting the NF-κB pathway. Diab Vas Dis Res. 2014;11:92–102.
  • Manna SK, Mukhopadhyay A, Aggarwal BB. Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-κB, activator protein-1 and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation. J Immun. 2000;164:6509–6519.
  • Bar-Yehuda S, Silverman MH, Kerns WD, Ochaion A, Cohen S, Fishman P. The anti-inflammatory effect of A3 adenosine receptor agonists: a novel targeted therapy for rheumatoid arthritis. Expert Opin Investig Drugs. 2009;16:1601–1613.
  • Ren T, Qiu Y, Wu W, et al. Activation of adenosine A3 receptor alleviates TNF-α-induced inflammation through inhibition of the NF-κB signaling pathway in human colonic epithelial cells. Mediators Inflamm. 2014;2014:11.
  • Morgan DO. The Cell Cycle: Principles of Control. London: New Science Press; 2007.30–31.
  • Song KS, Sung JH, Ji JH, et al. Recovery from silver-nanoparticle-exposure-inducedlung inflammation and lung function changes in Sprague Dawley rats. Nanotoxicology. 2013;7(2):169–180.
  • Dalzon B, Torres A, Diemer H, et al. How reversible are the effects of silver nanoparticles on macrophages? A proteomic-instructed view. Environ Sci. 2019;6(10):3133–3157.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.