113
Views
0
CrossRef citations to date
0
Altmetric
Basic Research

Adverse pulmonary effects after oral exposure to copper, manganese and mercury, alone and in mixtures, in a Spraque-Dawley rat model

, , &
Pages 146-159 | Received 05 Dec 2022, Accepted 22 Feb 2023, Published online: 01 Mar 2023

References

  • Liu Q, Gao Y, Ci X. Role of Nrf2 and its activators in respiratory diseases. Oxid Med Cell Longev. 2019;1–17. doi:10.1155/2019/7090534.
  • Kim D, Chen Z, Zhou LF, Huang SX. Air pollutants and early origins of respiratory diseases. Chronic Dis Transl Med. 2018;4(2):75–94. doi:10.1016/j.cdtm.2018.03.003.
  • Naidoo SVK, Bester MJ, Arbi S, Venter C, Dhanraj P, Oberholzer HM. Oral exposure to cadmium and mercury alone and in combination causes damage to the lung tissue of SpragueDawley rats. Environ Toxicol Pharmacol. 2019;69:86–94. doi:10.1016/j.etap.2019.03.021.
  • Erhabor GE. Respiratory health in Africa: strides and challenges. J Pan African Thoracic Soc. 2021;2(1):11–17. doi:10.25259/JPATS_30_2020.
  • Kierszenbaum AL, Tres L. Histology and Cell Biology: An Introduction to Pathology. 4th ed. Amsterdam: Elsevier Saunders; 2016.
  • Hamid Q, Tulic’ MK, Liu MC, Moqbel R. Inflammatory cells in asthma: mechanisms and implications for therapy. J Allergy Clin Immunol. 2003;111(1):S5–S17. doi:10.1067/mai.2003.22.
  • Karaman M, Arıkan Ayyıldız Z, Fırıncı F, et al. Effects of curcumin on lung histopathology and fungal burden in a mouse model of chronic asthma and oropharyngeal candidiasis. Arch Med Res. 2011;42(2):79–87. doi:10.1016/j.arcmed.2011.01.011.
  • Hamid Q. Gross pathology and histopathology of asthma. J Allergy Clin Immunol. 2003;111(2):431–432. doi:10.1067/mai.2003.147.
  • Molfino NA, Jeffery PK. Chronic obstructive pulmonary disease: histopathology, inflammation and potential therapies. Pulm Pharmacol Ther. 2007;20(5):462–472. doi:10.1016/j.pupt.2006.04.003.
  • Hogg J, Senior R. Chronic obstructive pulmonary disease c2: pathology and biochemistry of emphysema. Thorax. 2002;57:830–834.
  • Suki B. Lutchen KR and Ingenito EP. On the progressive nature of emphysema: roles of proteases, inflammation, and mechanical forces. Am J Respir Crit Care Med. 2003;168:516–521.
  • Di Petta A. Histopathological characteristics of pulmonary emphysema in experimental model. Einstein (Sao Paulo). 2014;12(3):382–383. doi:10.1590/s1679-45082014ai2681.
  • Marcos JV, Muñoz-Barrutia A, Ortiz-de-Solórzano C, Cristóbal G. Quantitative assessment of emphysema severity in histological lung analysis. Ann Biomed Eng. 2015;43(10):2515–2529. doi:10.1007/s10439-015-1251-5.
  • Mora AL, Torres-González E, Rojas M, et al. Activation of alveolar macrophages via the alternative pathway in herpesvirus-induced lung fibrosis. Am J Respir Cell Mol Biol. 2006;35(4):466–473. doi:10.1165/rcmb.2006-0121OC.
  • Raghu G, Weycker D, Edelsberg J, Bradford WZ, Gerry O. Incidence and prevalence of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2006;174(7):810–816. doi:10.1164/rccm.200602-163OC.
  • King TE. Pardo A and Selman M. Idiopathic pulmonary fibrosis. Lancet. 2011;378(9807): 1949–1961.
  • Selman M, Pardo A. The epithelial/fibroblastic pathway in the pathogenesis of idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. Sep 2003;29(3 Suppl):S93–7.
  • Kim DS, Park JH, Park BK, Lee JS, Nicholson AG, Colby T. Acute exacerbation of idiopathic pulmonary fibrosis: frequency and clinical features. Eur Respir J. 2006;27(1):143–150. doi:10.1183/09031936.06.00114004. PMID: 16387947.
  • Fry DL, Hyatt RE. Pulmonary mechanics: a unified analysis of the relationship between pressure, volume and gasflow in the lungs of normal and diseased human subjects. Am J Med. 1960;29:672–689. doi:10.1016/0002-9343(60)90100-5.
  • Tsai N-C, Lee R-M. Interaction between cardiovascular system and respiration. Appl Math Model. 2011;35(11):5460–5469. doi:10.1016/j.apm.2011.04.033.
  • Wildemann TM, Weber LP, Siciliano SD. Combined exposure to lead, inorganic mercury and methylmercury shows deviation from additivity for cardiovascular toxicity in rats. J Applied Toxicol. 2015;35:918–926.
  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdisciplin Toxicol. 2014;7:60–72.
  • Dorman DC, Struve MF, Gross EA, Wong BA, Howroyd PC. Sub-chronic inhalation of high concentrations of manganese sulfate induces lower airway pathology in rhesus monkeys. Respir Res. 2005;6:121–131.
  • Glezos JD, Albrecht JE, Gair RD. Pneumonitis after inhalation of mercury vapours. Can Respir J. 2006;13(3):150–152. doi:10.1155/2006/898120.
  • Gmj O, Rsa S, Dussaubat DN, Miller AME, González BS. Effect of copper sulphate on the lung damage induced by chronic intermittent exposure to ozone. Revista Medica de Chile. 2017;145:9–16.
  • Miller MA, Zachary JF. Mechanisms and morphology of cellular injury, adaptation, and death. Pathol Basis Vet Dis. 2017;2-43.e19. doi:10.1016/B978-0-323-35775-3.00001-1.
  • World Health Organization. Guidelines for drinking-water quality: fourth edition (2011). [Internet]. https://www.unicef.org/cholera/Chapter_4_prevention/01_WHO_Guidelines_for_drinking_water_quality.pdf.
  • Venter C, Oberholzer HM, Bester J, Van Rooy M-J, Bester MJ. Ultrastructural, confocal and viscoelastic characteristics of whole blood and plasma after exposure to cadmium and chromium alone and in combination: an ex vivo study. Cell Physiol Biochem. 2017;43:1288–1300.
  • van Rensburg MJ, van Rooy M-J, Bester MJ, Serem JC, Venter C, Oberholzer HM. Oxidative and haemostatic effects of copper, manganese and mercury, alone and in combination at physiologically relevant levels: an ex vivo study. Hum Exp Toxicol. 2019;38:419–433.
  • Arbi S, Bester MJ, Pretorius L, Oberholzer HM. Adverse cardiovascular effects of exposure to cadmium and mercury alone and in combination on the cardiac tissue and aorta of Sprague-Dawley rats. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2021;56(6):609–624. doi:10.1080/10934529.2021.
  • Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7:27–31.
  • Latouff R, Younes R, Lutomski D, et al. Picrosirius red staining: a useful tool to appraise collagen networks in normal and pathological tissues. J Histochem Cytochem. 2014;62:751–758.
  • Velindala S, Gaikwad P, Ella KKR, Bhorgonde KD, Hunsingi P, Anop K. Histochemical analysis of polarizing colours of collagen using Picro Sirius red staining in oral submucous fibrosis. J Oral Health. 2014;6:33–38.
  • Rigden HM, Alias A, Havelock T, et al. Squamous metaplasia is increased in the bronchial epithelium of smokers with chronic obstructive pulmonary disease. PLoS One. 2016;11(5):1–20. doi:10.1371/journal.pone.0156009.
  • Giroux V, Rustgi AK. Metaplasia: tissue injury adaptation and a precursor to the dysplasia-cancer sequence. Nat Rev Cancer. 2017;17(10):594–604. doi:10.1038/nrc.2017.68.
  • Robinson NE, Furlow PW. Anatomy of the respiratory system. Equine Resp Med Surgery. 2007;1:3–17.
  • Harkema JR, Nikula KJ, Haschek WM. Respiratory system. 3rd Ed. Fundament Toxicol Pathol. 2018;351–393. doi:10.1016/B978-0-12-809841-7.00014-9.
  • Knudsen L, Ochs M. The micromechanics of lung alveoli: structure and function of surfactant and tissue components. Histochem Cell Biol. 2018;150(6):661–676. doi:10.1007/s00418-018-1747-9.
  • Murtha LA, Schuliga MJ, Mabotuwana NS, et al. The processes and mechanisms of cardiac and pulmonary fibrosis. Front Physiol. 2017;8:777–792. doi:10.3389/fphys.2017.00777.
  • Farrell AP, MacLeod KR, Chancey B. Intrinsic mechanical properties of the perfused rainbow trout heart and the effects of catecholamines and extracellular calcium under control and acidotic conditions. J Experiment Biol. 1986;125:319–345.
  • Prescott G, Woodruff MPH, Bhakta NR, Fahy JV. Asthma: Pathogenesis and Phenotypes. 6 th ed. Philadelphia, Pennsylvania: Ed. Murray and Nadel’s Textbook of Respiratory Medicine; 2016:713–730.
  • Hohlfeld JM. The role of surfactant in asthma. Resp Res. 2002;3(1):4–12. doi:10.1186/rr176.
  • Michaudel C, Mackowiak C, Maillet I, et al. Ozone exposure induces respiratory barrier biphasic injury and inflammation controlled by IL-33. J Allergy Clin Immunol. 2018;142(3):942–958. doi:10.1016/j.jaci.2017.11.044.
  • Bateman RM, Sharpe MD, Ellis CG. Bench-to-bedside review: microvascular dysfunction in sepsis–hemodynamics, oxygen transport, and nitric oxide. Crit Care. 2003;7(5):359–373. doi:10.1186/cc2353.
  • Assad N, Sood A, Campen MJ, Zychowski KE. Metal-induced pulmonary fibrosis. Curr Environment Health Rep. 2018;5(4):486–498. doi:10.1007/s40572-018-0219-7.
  • Tang H, Xu M, Zhou XR, et al. Acute toxicity and biodistribution of different sized copper nano-particles in rats after oral administration. Mat Sci Eng. 2018;93:649–663. doi:10.1016/j.msec.2018.08.032.
  • Cho WS, Duffin R, Poland CA, et al. Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions in vitro and in vivo; zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lungs. Nanotoxicology. 2012;6(1):22–35. doi:10.3109/17435390.2011.552810.
  • Gosens I, Cassee FR, Zanella M, et al. Organ burden and pulmonary toxicity of nano-sized copper (II) oxide particles after short-term inhalation exposure. Nanotoxicology. 2016;10(8):1084–1095. doi:10.3109/17435390.2016.1172678.
  • Costa PM, Gosens I, Williams A, et al. Transcriptional profiling reveals gene expression changes associated with inflammation and cell proliferation following short-term inhalation exposure to copper oxide nanoparticles. J Appl Toxicol. 2018;38(3):385–397. doi:10.1002/jat.3548.
  • Lai X, Zhao H, Zhang Y, et al. Intranasal delivery of copper oxide nanoparticles induces pulmonary toxicity and fibrosis in C57BL/6 mice. Sci Rep. 2018;8(1):4499–4527. doi:10.1038/s41598-018-22556-7.
  • Boyadzhiev A, Avramescu M, Wu D, Williams A, Rasmussen P, Halappanavar S. Impact of copper oxide particle dissolution on lung epithelial cell toxicity: response characterization using global transcriptional analysis. Nanotoxicology. 2021;15:280–399.
  • Camner P, Curstedt T, Jarstrand C, Johannsson A, Robertson B, Wiernik A. Rabbit lung after inhalation of manganese chloride: a comparison with the effects of chlorides of nickel, cadmium, cobalt, and copper. Environment Res. 1985;38(2):301–309. doi:10.1016/0013-9351(85)90094-5.
  • Hakkinen PJ, Morse CC, Martin FM, Dalbey WE, Haschek WM, Witschi HR. Potentiating effects of oxygen in lungs damaged by methylcyclopentadienyl manganese tricarbonyl, cadmium chloride, oleic acid, and antitumor drugs. Toxicol Appl Pharmacol. 1983;67(1):55–69. doi:10.1016/0041-008x(83)90244-2.
  • Liu B, Yu H, Baiyun R, et al. Protective effects of dietary luteolin against mercuric chloride-induced lung injury in mice: involvement of AKT/Nrf2 and NFκB pathways. Food Chem Toxicol. 2018;113(2018):296–302. doi:10.1016/j.fct.2018.02.003.
  • Celikoglu E, Aslanturk A, Vitamin KY. E and sodium selenite against mercuric chloride-induced lung toxicity in the rats. Braz Arch Biol Technol. 2015;58(4):587–594. doi:10.1590/S1516-8913201500098.
  • Essam S, Shalaby Y, Maria A, Maria O. Evaluation of oral tissue response and blood levels of mercury released from dental amalgam in rats. Arch Oral Biol. 2013;58(8):981–988. doi:10.1016/j.archoralbio.2013.03.012.
  • Smiechowicz J, Skoczynska A, Nieckula-Szwarc A, Kulpa K, Kübler A. Occupational mercury vapour poisoning with a respiratory failure, pneumomediastinum and severe quadriparesis. SAGE Open Med Case Rep. 2017;5:1–11. doi:10.1177/2050313X17695472.
  • Lu TH, Chen CH, Lee MJ, et al. Methylmercury chloride induces alveolar type II epithelial cell damage through an oxidative stress-related mitochondrial cell death pathway. Toxicol Lett. 2010;194(3):70–78. doi:10.1016/j.toxlet.2010.02.003.
  • Ryter SW, Choi AM. Autophagy in lung disease pathogenesis and therapeutics. Redox Biol. 2015;4:215–225. doi:10.1016/j.redox.2014.12.010.
  • Grommes J, Soehnlein O. Contribution of neutrophils to acute lung injury. Mol Med. 2011;17(3–4):293–307. doi:10.2119/molmed.2010.00138.
  • Gray RD, Duncan A, Noble D, Imrie M, O’Reilly DS, Innes JA, Porteous DJ, Greening AP, Boyd AC. Sputum trace metals are biomarkers of inflammatory and suppurative lung disease. Chest. 2010;137:(3). 635–641. 10.1378/chest.09-1047.
  • Besiktepe N, Kayalar O, Ersen E, Oztay F. The copper dependent-lysyl oxidases contribute to the pathogenesis of pulmonary emphysema in chronic obstructive pulmonary disease patients. J Trace Elements Med Biol. 2017;44:247–255. doi:10.1016/j.jtemb.2017.08.011.
  • Black PN, Ching PST, Beaumont B, Ranasinghe S, Taylor G, Merrilees MJ. Changes in elastic fibres in the small airways and alveoli in COPD. Eur Resp J. 2008;998–1004. doi:10.1183/09031936.00017207.
  • Yang D, Yuan W, Lv C, et al. Dihydroartemisinin supresses inflammation and fibrosis in bleomycin-induced pulmonary fibrosis in rats. Int J Clin Exp Pathol. 2015;8:1270–1281.
  • Dagli CE, Tanrikulu AC, Koksal N, et al. Interstitial lung disease in coppersmiths in high serum copper levels. Biol Trace Element Res. 2010;137(1):63–68. doi:10.1007/s12011-009-8566-8.
  • Jiao H, Jiang D, Hu X, et al. Mitocytosis, a migrasome-mediated mitochondrial quality-control process. Cell. 2021;184(11):2896–2910. doi:10.1016/j.cell.2021.04.027.
  • Wang F, Zou Y, Shen Y, et al. Synergistic impaired effect between smoking and manganese dust exposure on pulmonary ventilation function in Guangxi manganese-exposed workers healthy cohort (GXMEWHC). PLoS One. 2015;10(2):1–20. doi:10.1371/journal.pone.0116558.
  • Tessier DM, Pascal LE. Activation of MAP kinases by hexavalent chromium, manganese and nickel in human lung epithelial cells. Toxicol Lett. 2006;167:(2). 114–121. 10.1016/j.toxlet.2006.08.015.
  • Smiechowics J, Skoczynska A, Nieckula-Scwarc A, Kulpa K, Kubler A. Occupational mercury vapour poisoning with a respiratory failure, pneumomediastinum and severe quadriparesis. Sage Open Med Case Rep. 2017;5. doi:10.1177/2050313X17695472.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.