120
Views
0
CrossRef citations to date
0
Altmetric
Basic Research

Histological and biochemical evaluation of the effects of silver nanoparticles (AgNps) versus titanium dioxide nanoparticles (TiO2NPs) on rat parotid gland

, , , ORCID Icon, , & ORCID Icon show all
Pages 339-363 | Received 21 Dec 2022, Accepted 19 Apr 2023, Published online: 03 May 2023

References

  • Chen Z, Han S, Zhou S, Feng H, Liu Y, Jia G. Review of Health Safety Aspects of Titanium Dioxide Nanoparticles in Food Application. NanoImpact. 2020Apr. 1;18:100224.
  • Kumar V, Sharma N, Maitra S. In vitro and in vivo toxicity assessment of nanoparticles. Int Nano Lett. 2017;7(4):243–256. doi:10.1007/s40089-017-0221-3.
  • Karlsson HL, Toprak MS, Fadeel B. Chapter 4 - Toxicity of metal and metal oxide nanoparticles. In: Nordberg G Costa M, eds. Handbook on the Toxicology of Metals (5th Edition). 2022. Academic Press;pp. 87–126.
  • Taha RM, Said RHM. Possible cytotoxic effects of silver nanoparticles on the parotid glands of albino rats. Egyptian Dental J. 2019;65(Issue 3 – July (Oral Medicine, X–Ray, Oral Biology & Oral Pathology)):2253–2263. doi:10.21608/edj.2019.72257.
  • Tortella G, et al. Silver nanoparticles: toxicity in model organisms as an overview of its hazard for human health and the environment. J Hazard Mater. 2020;390:121974. doi:10.1016/j.jhazmat.2019.121974.
  • Ferdous Z, Nemmar A. Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. Int J Mol Sci. 2020;21(7):2375. doi:10.3390/ijms21072375.
  • Taghyan SA, Messiry HE, Zainy MAE. Evaluation of the toxic effect of silver nanoparticles and the possible protective effect of ascorbic acid on the parotid glands of albino rats: an in vivo study. Toxicol Ind Health. 2020;36:446–453.
  • Abdelrahman SA, et al. Histomorphological changes and molecular mechanisms underlying the ameliorative effect of resveratrol on the liver of silver nanoparticles-exposed rats. Ultrastruct Pathol. 2022;1–17.
  • Antony JJ, Sivalingam P, Chen B. Toxicological effects of silver nanoparticles. Environ Toxicol Pharmacol. 2015;40:729–732.
  • Gatti AM, et al. Silver nanoparticles in the fetal brain: new perspectives in understanding the pathogenesis of unexplained stillbirths. Nanomedicine. 2021;16(4):265–274.
  • Hou J, et al. Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. J Environ Sci. 2019;75:40–53.
  • Baranowska-Wójcik E, et al. Effects of titanium dioxide nanoparticles exposure on human health—a review. Biol Trace Elem Res. 2020;193(1):118–129.
  • Jia X, et al. The potential liver, brain, and embryo toxicity of titanium dioxide nanoparticles on mice. Nanoscale Res Lett. 2017;12(1):1–14.
  • Kim KT, et al. General review of titanium toxicity. Int J Implant Dent. 2019;5(1):1–12.
  • Abdel Aal SM, et al. Duration-dependent effects induced by titanium dioxide nanoparticles on pancreas of adult male albino rats (histological and biochemical study). Ultrastruct Pathol. 2020;44(4–6):342–358.
  • Peters RJ, et al. Silicon dioxide and titanium dioxide particles found in human tissues. Nanotoxicology. 2020;14(3):420–432.
  • Brand W, et al. Possible effects of titanium dioxide particles on human liver, intestinal tissue, spleen and kidney after oral exposure. Nanotoxicology. 2020;14(7):985–1007.
  • Devi RS, Venckatesh R, Sivaraj R. Synthesis of titanium dioxide nanoparticles by sol-gel technique. Int J Innov Res Technol Sci Eng Technol. 2014;3:15206–15211.
  • Lee JH, Kim YS, Song KS, Ryu HR, Sung JH, Park JD, et al. Biopersistence of silver nanoparticles in tissues from Sprague-Dawley rats. Part Fibre Toxicol. 2013;10(1):1-4.
  • Amin YM, et al. Evaluation of acute and subchronic toxicity of silver nanoparticles in normal and irradiated animals. Br J Pharmacol Toxicol. 2015;6(2):22–38.
  • Ahmed SM, Abdelrahman SA, Shalaby SM. Evaluating the effect of silver nanoparticles on testes of adult albino rats (histological, immunohistochemical and biochemical study). J Mol Histol. 2017;48:9–27.
  • Song KS, et al. Recovery from silver-nanoparticle-exposure-induced lung inflammation and lung function changes in Sprague Dawley rats. Nanotoxicology. 2013;7(2):169–180.
  • Helmy AM, et al. Histological study of the renal cortical proximal and distal tubules in adult male albino rats following prolonged administration of titanium dioxide nanoparticles and the possible protective role of l-carnosine. Egypt J Histol. 2015;38(1):126–142.
  • Kobayashi N, Naya M, Endoh S, Maru J, Yamamoto K, Nakanishi J. Comparative pulmonary toxicity study of nano-TiO2 particles of different sizes and agglomerations in rats: different short-and long-term post-instillation results. Toxicology. 2009;264(1–2):110–118.
  • Wen L, Gao Q, Ma CW, Ge Y, You L, Liu RH, et al. Effect of polysaccharides from Tremella fuciformis on UV-induced photoaging. J Funct Foods. 2016;20:400–410.
  • Oliveira TC, Bradaschia-Correa V, Castro JR, Simoes A, Arana-Chavez VE. Ultrastructural and biochemical analysis of the effects of alendronate on salivary glands of young rats. Archives of oral biology. 2014;59(12):1307–1311.
  • Maral J, Puget K, Michelson A. Comparative study of superoxide dismutase, catalase and glutathione peroxidase levels in erythrocytes of different animals. Biochem Biophys Res Commun. 1977;77:1525–1535.
  • Placer ZA, Cushman LL, Johnson BC. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem. 1966;16:359–364.
  • Bancroft JD, Layton C. The hematoxylins and eosin, and connective and mesenchymal tissues with their stains. In: Suvarna S, Layton C, and Bancroft J, eds. Bancroft’s Theory and Practice of Histological Techniques, Chapters 10 and 11. 7th ed. Philadelphia: Churchill LivingstoneChurchill Livingstone; 2013:pp. 173–214.
  • Ramos-Vara JA, Kiupel M, Baszler T, Bliven L, Brodersen B, Chelak B, et al. Suggested guidelines for immunohistochemical techniques in veterinary diagnostic laboratories. J Vet Diagn. 2008;20(4):393–413.
  • Hayat MA. Principles and Techniques of Electron Microscopy: Biological Applications. 4th ed. Cambridge: Cambridge University Press; 2000:pp. 546–558.
  • Abdelhalim MAK. Gold nanoparticles administration induces disarray of heart muscle, hemorrhagic, chronic inflammatory cells infiltrated by small lymphocytes, cytoplasmic vacuolization and congested and dilated blood vessels. Lipids Health Dis. 2011;10(1):1–9.
  • Haghighat F, Kim Y, Sourinejad I, Yu IJ, Johari SA . Titanium dioxide nanoparticles affect the toxicity of silver nanoparticles in common carp (Cyprinus carpio). Chemosphere. 2021;262:127805.
  • Sharma VK, Sayes CM, Guo B, Pillai S, Parsons JG, Wang C, et al. Interactions between silver nanoparticles and other metal nanoparticles under environmentally relevant conditions: a review. Sci Total Environ. 2019;653:1042–1051.
  • Pedersen AML, Sorensen CE, ProctorGB, Carpenter GH, Ekstrom J. Salivary secretion in health and disease. J Oral Rehabil. 2018;45(9):730–746.
  • Minigalieva IA, et al. In vivo toxicity of copper oxide, lead oxide and zinc oxide nanoparticles acting in different combinations and its attenuation with a complex of innocuous bio-protectors. Toxicology. 2017;380:72–93.
  • Valentini X, Rugira P, Frau A, Tagliatti V, Conotti R, Laurent S. Hepatic and renal toxicity induced by TiO2 nanoparticles in rats: a morphological and metabonomic study. J Toxicol. 2019;2019:19.
  • Ashour I, Saleh S, Shalhy A, Ibrahim E, Doiwdar M. Silver nanoparticles effect on cytokines in rat. Biochemistry Letters. 13(1):172–182.
  • Shabbir S, Kulyar MF, Bhutta ZA, Boruah P, Asif M. Toxicological consequences of titanium dioxide nanoparticles (TiO(2)nps) and their jeopardy to human population. Bionanoscience. 2021;11(2):621–632.
  • Chen IC, Hsiao IL, Lin HC, Wu CH, Chuang CY, Huang YJ. Influence of silver and titanium dioxide nanoparticles on in vitro blood-brain barrier permeability. Environ Toxicol Pharmacol. 2016;47:108–118.
  • Kurjane N, Zvagule T, Reste J, Martinsone Z, Pavlovska I, Martinsone I. The effect of different workplace nanoparticles on the immune systems of employees. J Nanopart Res. 2017;19: 1–12.
  • Ibrahim R, Salem MY, Helal OK, El-Monem A, Sahar N. Effect of titanium dioxide nanoparticles on the spleen of adult male albino rats: histological and immunohistochemical study. Egypt J Histol. 2018;41(3):311–328.
  • Hong J, Hong F, Ze Y, Zhang YQ. The nano-TiO2 exposure can induce hepatic inflammation involving in a JAK–STAT signalling pathway. J Nanopart Res. 2016;18(6):1–9.
  • Cui Y, Liu H, Zhou M, Duan Y, Li N, Gong X, et al. Signaling pathway of inflammatory responses in the mouse liver caused by TiO2 nanoparticles. J Biomed Mater Res A. 2011;96A(1):221–229.
  • Song M-F, Li YS, Kasai H, Kawai K. Metal nanoparticle-induced micronuclei and oxidative DNA damage in mice. J Clin Biochem Nutr. 2012;50(3):211–216.
  • Alarifi S, Ali D, Alkahtani S, Verma A, Ahamed M, Ahmed M, et al. Induction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles. Int J Nanomedicine. 2013;8:983–993.
  • Ze Y, Hu R, Wang X, Sang X, Ze X, Li B, et al. Neurotoxicity and gene-expressed profile in brain-injured mice caused by exposure to titanium dioxide nanoparticles. J Biomed Mater Res A. 2014;102(2):470–478.
  • Sun X, Yang Y, Shi J, Wang C, Yu Z, Zhang H. NOX4- and Nrf2-mediated oxidative stress induced by silver nanoparticles in vascular endothelial cells. J Appl Toxicol. 2017;37(12):1428–1437.
  • Metryka O, Wasilkowski D, Mrozik A. Evaluation of the effects of Ag, Cu, ZnO and TiO2 nanoparticles on the expression level of oxidative stress-related genes and the activity of antioxidant enzymes in Escherichia coli, Bacillus cereus and Staphylococcus epidermidis. Int J Mol Sci. 2022;23(9):4966.
  • Yang H, Liu C, Yang D, Zhang H, Xi Z. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol. 2009;29(1):69–78.
  • Bonda TA, Szynaka B, Sokolowska M, Dziemidowicz M, Waszkiewicz E, Winnicka MM, et al. Interleukin 6 modulates PPARα and PGC-1α and is involved in high-fat diet induced cardiac lipotoxicity in mouse. Int J Cardiol. 2016;219:1–8.
  • Ji LL, Yeo D, Mitochondrial dysregulation and muscle disuse atrophy. F1000Research. 2019;8.
  • Choi YK, Kim JH, Lee DK, Lee KS, Won MH, Jeoung D, et al. Carbon monoxide potentiation of L-type Ca2+ channel activity increases HIF-1α-independent VEGF expression via an AMPKα/SIRT1-mediated PGC-1α/ERRα axis. Antioxidants & Redox Signal. 2017;27(1):21–36.
  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006;6(8):1794–1807.
  • Dora MF, et al. Quercetin attenuates brain oxidative alterations induced by iron oxide nanoparticles in rats. Int J Mol Sci. 2021;22(8):3829.
  • Ozer M, et al. Thymoquinone protection from amikacin induced renal injury in rats. Biotechnic Histochemist. 2020;95(2):129–136.
  • Jiang L, et al. Nanosized carbon black exposure induces neural injury: effects on nicotinamide adenine dinucleotide phosphate oxidases and endoplasmic reticulum stress. J Appl Toxicol. 2019;39(8):1108–1117.
  • Wang W, Liang X, Liu X, Bai J, Zhang W, Li W, et al. NOX4 blockade suppresses titanium nanoparticle-induced bone destruction via activation of the Nrf2 signaling pathway. J Nanobiotechnol. 2022;20(1):1–5.
  • Masoud R, et al. Titanium dioxide nanoparticles increase superoxide anion production by acting on NADPH oxidase. 2015;10(12):e0144829. Plos One
  • Zheng T, et al. Spliced MDM2 isoforms promote mutant p53 accumulation and gain-of-function in tumorigenesis. Nat Commun. 2013;4(1):1–12.
  • Zhao Y, Yu H, Hu W. The regulation of MDM2 oncogene and its impact on human cancers. Acta Biochim Biophys Sin. 2014;46:180–189.
  • Blanco J, et al. Polyvinyl pyrrolidone-coated silver nanoparticles in a human lung cancer cells: time- and dose-dependent influence over p53 and caspase-3 protein expression and epigenetic effects. Archives of Toxicology. 2017;91(2):651–666.
  • Wang R-S, et al. Injury in minipig parotid glands following fractionated exposure to 30 Gy of ionizing radiation. Otolaryngology–Head and Neck Surgery. 2014;151(1):100–106.
  • Ma W, et al. Silver nanoparticle exposure induced mitochondrial stress, caspase-3 activation and cell death: amelioration by sodium selenite. Int J Biol Sci. 2015;11(8):860–867.
  • Fekry MM, El-Zainy MA, Amin RM. Investigation of the toxic effect of titanium dioxide nanoparticles and the possible recovery after 4 weeks withdrawal on the submandibular salivary gland of albino rats: an in vivo study. Ain Shams Dental Journal. 2020;20:70–76.
  • Cheresh P, et al. Oxidative stress and pulmonary fibrosis. Biochim Biophys Acta Mol Basis Dis. 2013;1832(7):1028–1040.
  • Mo Y, et al. MiR-21 mediates nickel nanoparticle-induced pulmonary injury and fibrosis. Nanotoxicology. 2020;14(9):1175–1197.
  • Shamel M, Riad D, Al Ankily M. Histological and ultrastructural study of silver nanoparticles toxicity and the possible protective effect of vitamin C on submandibular salivary glands of albino rats. Int J Oral Sci (IJDOS). 2021;8:2166–2171.
  • Bakr MM, et al. Attenuating effect of vitamin e against silver nano particles toxicity in submandibular salivary glands. Bioengineering. 2021;8(12):219.
  • Katsnelson BA, et al. Comparative in vivo assessment of some adverse bioeffects of equidimensional gold and silver nanoparticles and the attenuation of nanosilver’s effects with a complex of innocuous bioprotectors. Int J Mol Sci. 2013;14(2):2449–2483.
  • El Mahdy MM, et al. Evaluation of hepatotoxic and genotoxic potential of silver nanoparticles in albino rats. Exp Toxicol Pathol. 2015;67(1):21–29.
  • Song B, et al. Contribution of oxidative stress to TiO2 nanoparticle-induced toxicity. Environ Toxicol Pharmacol. 2016;48:130–140.
  • Jugan M-L, et al. Titanium dioxide nanoparticles exhibit genotoxicity and impair DNA repair activity in A549 cells. Nanotoxicology. 2012;6(5):501–513.
  • Mohammadi F, et al. The effects of Nano titanium dioxide (TiO(2)nps) on lung tissue. Bratislava Medical Journal-Bratislavske Lekarske Listy. 2015;116(6):363–367.
  • Galley JC, Straub AC. Redox Control of Vascular Function. Arterioscler Thromb Vasc Biol. 2017;37:E178–184.
  • Yu Y, et al. Acute Toxicity of Amorphous Silica Nanoparticles in Intravenously Exposed ICR Mice. PLoS One. 2013;8(4):e61346.
  • Hamza SA, et al. Ultrastructural study of the effect of zinc oxide nanoparticles on rat parotid salivary glands and the protective role of quercetin. Alexandria Dental Journal. 2016;41(3):232–237.
  • Sarhan OMM, Hussein RM. Effects of intraperitoneally injected silver nanoparticles on histological structures and blood parameters in the albino rat. Int J Nanomedicine. 2014;9:1505–1517.
  • Sabella S, et al. A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale. 2014;6(12):7052–7061.
  • Bhandary B, et al. An Involvement of Oxidative Stress in Endoplasmic Reticulum Stress and Its Associated Diseases. Int J Mol Sci. 2013;14(1):434–456.
  • Cao Y, et al. A review of endoplasmic reticulum (ER) stress and nanoparticle (NP) exposure. Life Sci. 2017;186:33–42.
  • Orr SE, et al. Alteration in the mRNA expression of genes associated with gastrointestinal permeability and ileal TNF-α secretion due to the exposure of silver nanoparticles in Sprague–Dawley rats. J Nanobiotechnol. 2019;17(1):1–10.
  • Huang Y, et al. Disruption of tight junctions contributes to hyposalivation of salivary glands in a mouse model of type 2 diabetes. J Anat. 2020;237(3):556–567.
  • Baker OJ. Current trends in salivary gland tight junctions. Tissue Barriers. 2016;4:e1162348.
  • Fabian E, et al. Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Arch Toxicol. 2008;82(3):151–157.
  • Gawish M, et al. Ceffect of silver nanoparticles versus titanium dioxide nanoparticles on the lung of adult male albino rats: a histological and immunohistochemical study. J Med Histol. 2019;2(2):181–200.
  • Mesallam DIA, et al. Toxicity of subacute oral zinc oxide nanoparticles on testes and prostate of adult albino rats and role of recovery. J Histol Histopathol. 2019;6(1):2.
  • C A, Handral HK, Kelmani R C. A comparative in vivo scrutiny of biosynthesized copper and zinc oxide nanoparticles by intraperitoneal and intravenous administration routes in rats. Nanoscale Res Lett. 2018;13(1).
  • Neibert KD, Maysinger D, Mechanisms of cellular adaptation to quantum dots - the role of glutathione and transcription factor EB. Nanotoxicology. 2012;6(3):249–262.
  • Asare N, et al. Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology. 2012;291(1–3):65–72.
  • Yun J-W, et al. Comparative toxicity of silicon dioxide, silver and iron oxide nanoparticles after repeated oral administration to rats. J Appl Toxicol. 2015;35(6):681–693.
  • Liu J, et al. Chemical transformations of nanosilver in biological environments. Acs Nano. 2012;6(11);9887–9899.
  • McShan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. J Food Drug Anal. 2014;22:116–127.
  • Dalzon B, Torres A, Diemer H, et al. How reversible are the effects of silver nanoparticles on macrophages? A proteomic-instructed view. Environ Sci. 2019;6(10):3133–3157.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.