149
Views
0
CrossRef citations to date
0
Altmetric
Clinical Research

Histological and electron microscopic features of the extracellular matrix of invasive breast ductal carcinoma of no special type. Report of 5 cases and literature review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 261-270 | Received 06 Mar 2023, Accepted 27 Apr 2023, Published online: 09 May 2023

References

  • Parijatham ST. Diagnosis and management of high-risk breast lesions. J Natl Compr Canc Netw. 2018;16(11):1391–1396. doi:10.6004/JNCCN.2018.7099.
  • Brogi E, Krystel-Whittemore M. Papillary neoplasms of the breast including upgrade rates and management of intraductal papilloma without atypia diagnosed at core needle biopsy. Modern Pathol. 2020;34(1):1. doi:10.1038/s41379-020-00706-5.
  • Coutant C, Canlorbe G, Bendifallah S, Beltjens F. Prise en charge des proliférations épithéliales du sein avec et sans atypies : hyperplasie canalaire atypique, métaplasie cylindrique avec atypie, néoplasies lobulaires, proliférations épithéliales sans atypie, mastopathie fibrokystique, adénose, cicatrices radiaires, mucocèles, lésions prolifératives apocrines : recommandations pour la pratique clinique. J Gynecol Obstet Biol Reprod (Paris). 2015;44(10):980–995. doi:10.1016/J.JGYN.2015.09.037.
  • Solin LJ. Management of Ductal Carcinoma in situ (DCIS) of the breast: present approaches and future directions. Curr Oncol Rep. 2019;2121(4):4–81–8. doi:10.1007/S11912-019-0777-3.
  • Stachs A, Stubert J, Reimer T, Hartmann S. Benign breast disease in women. Dtsch Arztebl Int. 2019;116(33–34):565–573. doi:10.3238/ARZTEBL.2019.0565.
  • Thorat MA, Balasubramanian R. Breast cancer prevention in high-risk women. Best Pract Res Clin Obstet Gynaecol. 2020;65:18–31. doi:10.1016/J.BPOBGYN.2019.11.006.
  • Zhang Y, Kleer CG. Phyllodes tumor of the breast: histopathologic features, differential diagnosis, and molecular/genetic updates. Arch Pathol Lab Med. 2016;140(7):665–671. doi:10.5858/ARPA.2016-0042-RA.
  • Piersma B, Hayward MK, Weaver VM. Fibrosis and cancer: a strained relationship. Biochimica Et Biophysica Acta (BBA) - Reviews on Cancer. 2020;1873(2):188356. doi:10.1016/J.BBCAN.2020.188356.
  • Rakha EA, Miligy IM, Gorringe KL, et al. Invasion in breast lesions: the role of the epithelial–stroma barrier. Histopathology. 2018;72(7):1075–1083. doi:10.1111/HIS.13446.
  • Yu K, Rohr J, Liu Y, et al. Progress in triple negative breast carcinoma pathophysiology: potential therapeutic targets. Pathol Res Pract. 2020;216(4):152874. doi:10.1016/J.PRP.2020.152874.
  • Chen W, Wei W, Yu L, et al. Mammary development and breast cancer: a notch perspective. J Mammary Gland Biol Neoplasia. 2021;26(3):309–320. doi:10.1007/S10911-021-09496-1.
  • Makki J. Diversity of breast carcinoma: histological subtypes and clinical relevance. Clin Med Insights Pathol. 2015;8(1):23. doi:10.4137/CPATH.S31563.
  • Cserni G. Histological type and typing of breast carcinomas and the WHO classification changes over time. Pathologica. 2020;112(1):25–41. doi:10.32074/1591-951X-1-20.
  • Chen H, Bai F, Wang M, Zhang M, Zhang P, Wu K. The prognostic significance of co-existence ductal carcinoma in situ in invasive ductal breast cancer: a large population-based study and a matched case-control analysis. Ann Transl Med. 2019;7(18):484. doi:10.21037/ATM.2019.08.16.
  • Kim M, Kim M, Chung YR, Park SY. Mammary carcinoma arising in microglandular adenosis: a report of five cases. J Pathol Transl Med. 2017;51(4):422–427. doi:10.4132/JPTM.2016.11.11.
  • Scholl AR, Flanagan MB. Educational case: invasive ductal carcinoma of the breast. Acad Pathol. 2020;7:7. doi:10.1177/2374289519897390.
  • Zagelbaum NK, Ward MF, Okby N, Karpoff H. Invasive ductal carcinoma of the breast with osteoclast-like giant cells and clear cell features: a case report of a novel finding and review of the literature. World J Surg Oncol. 2016;14(1). doi:10.1186/S12957-016-0982-6.
  • Fu Z, Song P, Li D, et al. Cancer-associated fibroblasts from invasive breast cancer have an attenuated capacity to secrete collagens. Int J Oncol. 2014;45(4):1479–1488. doi:10.3892/IJO.2014.2562/HTML.
  • Oskarsson T. Extracellular matrix components in breast cancer progression and metastasis. Breast. 2013;2(S2):S66–72. doi:10.1016/J.BREAST.2013.07.012.
  • Giussani M, Landoni E, Merlino G, et al. Extracellular matrix proteins as diagnostic markers of breast carcinoma. J Cell Physiol. 2018;233(8):6280–6290. doi:10.1002/JCP.26513.
  • Cox TR, Erler JT. Molecular pathways: connecting fibrosis and solid tumor metastasis. Clin Cancer Res. 2014;20(14):3637–3643. doi:10.1158/1078-0432.CCR-13-1059.
  • Wyckoff JB, Wang Y, Lin EY, et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 2007;67(6):2649–2656. doi:10.1158/0008-5472.CAN-06-1823.
  • Egeblad M, Rasch MG, Weaver VM. Dynamic interplay between the collagen scaffold and tumor evolution. Curr Opin Cell Biol. 2010;22(5):697–706. doi:10.1016/J.CEB.2010.08.015.
  • Lindgren M, Jansson M, Tavelin B, Dirix L, Vermeulen P, Nyström H. Type IV collagen as a potential biomarker of metastatic breast cancer. Clin Exp Metastasis. 2021;38(2):175–185. doi:10.1007/S10585-021-10082-2.
  • Chang J, Chaudhuri O. Beyond proteases: basement membrane mechanics and cancer invasion. J Cell Biol. 2019;218(8):2456–2469. doi:10.1083/JCB.201903066.
  • Nyström H, Naredi P, Hafström L, Sund M. Type IV collagen as a tumour marker for colorectal liver metastases. Eur J Surg Oncol. 2011;37(7):611–617. doi:10.1016/J.EJSO.2011.04.010.
  • Dhakal HP, Bassarova A, Naume B, et al. Breast carcinoma vascularity: a comparison of manual microvessel count and Chalkley count. Histol Histopathol. 2009;24(8):1049–1059. doi:10.14670/HH-24.1049.
  • Senchukova MA, Nikitenko NV, Tomchuk ON, Zaitsev NV, Stadnikov AA. Different types of tumor vessels in breast cancer: morphology and clinical value. Springerplus. 2015;4(1). doi:10.1186/S40064-015-1293-Z.
  • Kim J. Pericytes in breast cancer. Adv Exp Med Biol. 2019;1147:93–107. doi:10.1007/978-3-030-16908-4_3.
  • Coleman RE, Gregory W, Marshall H, Wilson C, Holen I. The metastatic microenvironment of breast cancer: clinical implications. Breast. 2013;2(S2):S50–56. doi:10.1016/J.BREAST.2013.07.010.
  • Soysal SD, Tzankov A, Muenst SE. Role of the tumor microenvironment in breast cancer. Pathobiology. 2015;82(3–4):142–152. doi:10.1159/000430499.
  • Cowell CF, Weigelt B, Sakr RA, et al. Progression from ductal carcinoma in situ to invasive breast cancer: revisited. Mol Oncol. 2013;7(5):859–869. doi:10.1016/J.MOLONC.2013.07.005.
  • Folgueira MAAK, Maistro S, Katayama MLH, et al. Markers of breast cancer stromal fibroblasts in the primary tumour site associated with lymph node metastasis: a systematic review including our case series. Biosci Rep. 2013;33(6). doi:10.1042/BSR20130060.
  • Nguyen M, Lee MC, Wang JL, et al. The human myoepithelial cell displays a multifaceted anti-angiogenic phenotype. Oncogene. 2000;19(31):3449–3459. doi:10.1038/SJ.ONC.1203677.
  • Del Valle PR, Milani C, Brentani MM, et al. Transcriptional profile of fibroblasts obtained from the primary site, lymph node and bone marrow of breast cancer patients. Genet Mol Biol. 2014;37(3):480. doi:10.1590/S1415-47572014000400002.
  • Orimo A, Gupta PB, Sgroi DC, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121(3):335–348. doi:10.1016/J.CELL.2005.02.034.
  • Martinez-Outschoorn UE, Lisanti MP, Sotgia F. Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin Cancer Biol. 2014;25:47–60. doi:10.1016/J.SEMCANCER.2014.01.005.
  • Pelon F, Bourachot B, Kieffer Y, et al. Cancer-associated fibroblast heterogeneity in axillary lymph nodes drives metastases in breast cancer through complementary mechanisms. Nat Commun. 2020;11(1). doi:10.1038/S41467-019-14134-W.
  • Choi YP, Lee JH, Gao MQ, et al. Cancer-associated fibroblast promote transmigration through endothelial brain cells in three-dimensional in vitro models. Int J Cancer. 2014;135(9):2024–2033. doi:10.1002/IJC.28848.
  • Wen S, Hou Y, Fu L, et al. Cancer-associated fibroblast (CAF)-derived IL32 promotes breast cancer cell invasion and metastasis via integrin β3–p38 MAPK signalling. Cancer Lett. 2019;442:320–332. doi:10.1016/J.CANLET.2018.10.015.
  • da Cunha A, Michelin MA, Murta EFC. Pattern response of dendritic cells in the tumor microenvironment and breast cancer. World J Clin Oncol. 2014;5(3):495. doi:10.5306/WJCO.V5.I3.495.
  • Varikuti S, Singh B, Volpedo G, et al. Ibrutinib treatment inhibits breast cancer progression and metastasis by inducing conversion of myeloid-derived suppressor cells to dendritic cells. Br J Cancer. 2020;122122(7):7–10131005–1013. doi:10.1038/s41416-020-0743-8.
  • Fainaru O, Almog N, Yung CW, et al. Tumor growth and angiogenesis are dependent on the presence of immature dendritic cells. Faseb J. 2010;24(5):1411. doi:10.1096/FJ.09-147025.
  • Gardner A, Ruffell B. Dendritic cells and cancer immunity. Trends Immunol. 2016;37(12):855–865. doi:10.1016/J.IT.2016.09.006.
  • Michielsen AJ, Hogan AE, Marry J, et al. Tumour tissue microenvironment can inhibit dendritic cell maturation in colorectal cancer. PLoS One. 2011;6(11):e27944. doi:10.1371/JOURNAL.PONE.0027944.
  • Ning Y, Shen K, Wu Q, et al. Tumor exosomes block dendritic cells maturation to decrease the T cell immune response. Immunol Lett. 2018;199:36–43. doi:10.1016/J.IMLET.2018.05.002.
  • Chen X, Shao Q, Hao S, et al. CTLA-4 positive breast cancer cells suppress dendritic cells maturation and function. Oncotarget. 2017;8(8):13703–13715. doi:10.18632/ONCOTARGET.14626.
  • Obeid E, Nanda R, Fu YX, Olopade OI. The role of tumor-associated macrophages in breast cancer progression (review). Int J Oncol. 2013;43(1):5–12. doi:10.3892/ijo.2013.1938.
  • Qiu SQ, Waaijer SJH, Zwager MC, de Vries EGE, van der Vegt B, Schröder CP. Tumor-associated macrophages in breast cancer: innocent bystander or important player? Cancer Treat Rev. 2018;70:178–189. doi:10.1016/J.CTRV.2018.08.010.
  • Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;33(1):1–3523–35. doi:10.1038/nri978.
  • Jamiyan T, Kuroda H, Yamaguchi R, Abe A, Hayashi M. CD68- and CD163-positive tumor-associated macrophages in triple negative cancer of the breast. Virchows Archiv. 2020;477(6):767–775. doi:10.1007/s00428-020-02855-z.
  • Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol. 2009;86(5):1065–1073. doi:10.1189/JLB.0609385.
  • Paijens ST, Vledder A, de Bruyn M, Nijman HW. Tumor-infiltrating lymphocytes in the immunotherapy era. Cell Mol Immunol. 2021;18(4):842–859. doi:10.1038/S41423-020-00565-9.
  • Stanton SE, Disis ML. Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J Immunother Cancer. 2016;4(1). doi:10.1186/S40425-016-0165-6.
  • Allen M, Jones JL. Jekyll and Hyde: the role of the microenvironment on the progression of cancer. J Pathol. 2011;223(2):163–177. doi:10.1002/PATH.2803.
  • Tanaka A, Sakaguchi S. Targeting Treg cells in cancer immunotherapy. Eur J Immunol. 2019;49(8):1140–1146. doi:10.1002/EJI.201847659.
  • Núñez NG, Tosello Boari J, Ramos RN, et al. Tumor invasion in draining lymph nodes is associated with Treg accumulation in breast cancer patients. Nat Commun. 2020;11(1). doi:10.1038/S41467-020-17046-2.
  • Infante M, Fabi A, Cognetti F, Gorini S, Caprio M, Fabbri A. RANKL/RANK/OPG system beyond bone remodeling: involvement in breast cancer and clinical perspectives. J Exp Clin Cancer Res. 2019;38(1). doi:10.1186/S13046-018-1001-2.
  • van Dam PA, Verhoeven Y, Trinh XB, et al. RANK/RANKL signaling inhibition may improve the effectiveness of checkpoint blockade in cancer treatment. Crit Rev Oncol Hematol. 2019;133:85–91. doi:10.1016/J.CRITREVONC.2018.10.011.
  • Del Alcazar CRG, Alečkovic M, Polyak K. Immune escape during breast tumor progression. Cancer Immunol Res. 2020;8(4):422–427. doi:10.1158/2326-6066.CIR-19-0786.
  • Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565–1570. doi:10.1126/SCIENCE.1203486.
  • Wu SY, Fu T, Jiang YZ, Shao ZM. Natural killer cells in cancer biology and therapy. Mol Cancer. 2020;19(1). doi:10.1186/S12943-020-01238-X.
  • Nascimento C, Ferreira F. Tumor microenvironment of human breast cancer, and feline mammary carcinoma as a potential study model. Biochimica Et Biophysica Acta (BBA) - Reviews on Cancer. 2021;1876(1):188587. doi:10.1016/J.BBCAN.2021.188587.
  • Roberti MP, Mordoh J, Levy EM. Biological role of NK cells and immunotherapeutic approaches in breast cancer. Front Immunol. 2012;3(DEC):375. doi:10.3389/fimmu.2012.00375.
  • Sordo-Bahamonde C, Lorenzo-Herrero S, Payer ÁR, Gonzalez S, López-Soto A. Mechanisms of apoptosis resistance to NK cell-mediated cytotoxicity in cancer. Int J Mol Sci. 2020;21(10):3726. doi:10.3390/IJMS21103726.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.