0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ameliorative effects of gallic acid on tebuconazole–induced adverse effects in the cerebellum of adult albino rats: histopathological and immunohistochemical evidence

ORCID Icon &
Received 02 Jun 2024, Accepted 30 Jul 2024, Published online: 06 Aug 2024

References

  • Ku T, Zhou M, Hou Y, Xie Y, Li G, Sang N. Tebuconazole induces liver injury coupled with ros-mediated hepatic metabolism disorder. Ecotoxicol Environ Saf. 2021;220:112309. doi:10.1016/j.ecoenv.2021.112309.
  • Dong B. A comprehensive review on toxicological mechanisms and transformation products of tebuconazole: insights on pesticide management. Sci Of The Total Environ. 2024;908:168264. doi:10.1016/j.scitotenv.2023.168264.
  • Stamatis N, Antonopoulou M, Konstantinou I. Photocatalytic degradation kinetics and mechanisms of fungicide tebuconazole in aqueous TiO2 suspensions. Catalysis Today. 2015;252:93–99. doi:10.1016/j.cattod.2014.09.023.
  • Ku T, Hu J, Zhou M, Xie Y, Liu Y, Tan X, et al. Cardiac energy metabolism disorder mediated by energy substrate imbalance and mitochondrial damage upon tebuconazole exposure. J Environ Sci. 2024;136:270–278. doi:10.1016/j.jes.2022.10.012.
  • Sun T, Miao J, Saleem M, Zhang H, Yang Y, Zhang Q. Bacterial compatibility and immobilization with biochar improved tebuconazole degradation, soil microbiome composition and functioning. J Hazard Mater. 2020;398:122941. doi:10.1016/j.jhazmat.2020.122941.
  • Ku T, Liu Y, Xie Y, Hu J, Hou Y, Tan X, et al. Tebuconazole mediates cognitive impairment via the microbe-gut-brain axis (MGBA) in mice. Environ Int. 2023;173:107821. doi:10.1016/j.envint.2023.107821.
  • Peng F-J, Hardy EM, Mezzache S, Bourokba N, Palazzi P, Stojiljkovic N, et al. Exposure to multiclass pesticides among female adult population in two Chinese cities revealed by hair analysis. Environ Int. 2020;138:105633. doi:10.1016/j.envint.2020.105633.
  • Sannino A, Bolzoni L, Bandini M. Application of liquid chromatography with electrospray tandem mass spectrometry to the determination of a new generation of pesticides in processed fruits and vegetables. J Chromatogr A. 2004;1036(2):161–169. doi:10.1016/j.chroma.2004.02.078.
  • Fontana AR, Rodríguez I, Ramil M, Altamirano JC, Cela R. Solid-phase extraction followed by liquid chromatography quadrupole time-of-flight tandem mass spectrometry for the selective determination of fungicides in wine samples. J Chromatogr A. 2011;1218(16):2165–2175. doi:10.1016/j.chroma.2011.02.025.
  • Ma X, Chen X, Hou H, Liu D, Liu X, Wang P, et al. Low dose of Carbendazim and tebuconazole: accumulation in tissues and effects on hepatic oxidative stress in mice. Toxics. 2023;11(4):326. doi:10.3390/toxics11040326.
  • Morgan AM, Ogaly HA, Kamel S, Rashad MM, Hassanen EI, Ibrahim MA, et al. Protective effects of N-acetyl-l-cysteine against penconazole-triggered hepatorenal toxicity in adult rats. J Vet Res. 2023;67(3):459–469. doi:10.2478/jvetres-2023-0039.
  • Li S, Sun Q, Wu Q, Gui W, Zhu G, Schlenk D. Endocrine disrupting effects of tebuconazole on different life stages of zebrafish (danio rerio). Environ Pollut. 2019;249:1049–1059. doi:10.1016/j.envpol.2019.03.067.
  • Serra L, Estienne A, Bongrani A, Ramé C, Caria G, Froger C, et al. The epoxiconazole and tebuconazole fungicides impair granulosa cells functions partly through the aryl hydrocarbon receptor (AHR) signalling with contrasted effects in obese, normo-weight and polycystic ovarian syndrome (PCOS) patients. Toxicol Rep. 2024;12:65–81. doi:10.1016/j.toxrep.2023.12.009.
  • Jacobsen PR, Axelstad M, Boberg J, Isling LK, Christiansen S, Mandrup KR, et al. Persistent developmental toxicity in rat offspring after low dose exposure to a mixture of endocrine disrupting pesticides. Reprod Toxicol. 2012;34(2):237–250. doi:10.1016/j.reprotox.2012.05.099.
  • Cortes S, Pozo K, Llanos Y, Martinez N, Foerster C, Leiva C, et al. First measurement of human exposure to current use pesticides (CUPs) in the atmosphere of central Chile: the case study of mauco cohort. Atmos Pollut Res. 2020;11(4):776–784. doi:10.1016/j.apr.2019.12.023.
  • Ongono JS, Béranger R, Baghdadli A, Mortamais M. Pesticides used in Europe and autism spectrum disorder risk: can novel exposure hypotheses be formulated beyond organophosphates, organochlorines, pyrethroids and carbamates? A systematic review. Environ Res. 2020;187:109646. doi:10.1016/j.envres.2020.109646.
  • Sanchez CL, Souders Ii CL, Pena-Delgado CJ, Nguyen KT, Kroyter N, El Ahmadie N, et al. Neurotoxicity assessment of triazole fungicides on mitochondrial oxidative respiration and lipids in differentiated human SH-SY5Y neuroblastoma cells. Neurotoxicology. 2020;80:76–86. doi:10.1016/j.neuro.2020.06.009.
  • Yeltekin AÇ. Effect of fungicide toxicity on apoptosis, DNA damage, and antioxidant enzymes in van fish. Pak J Zool. 2023;55(1):355–360. doi:10.17582/journal.pjz/20210806130845.
  • Stoenescu AM, Trandafir I. Quantification of ellagic and gallic acid from leaves of wild fruit species by uhplc chromatography. Ann of the Univ of Craiova, Biol, Horticulture, Food Products Process Technol, Environ Eng. 2023;28(64). doi:10.52846/bihpt.v28i64.107.
  • Xu Y, Tang G, Zhang C, Wang N, Feng Y. Gallic acid and diabetes mellitus: its association with oxidative stress. Molecules. 2021;26(23):7115. doi:10.3390/molecules26237115.
  • Nguyen-Ngo C, Salomon C, Lai A, Willcox JC, Lappas M. Anti-inflammatory effects of gallic acid in human gestational tissues in vitro. Reproduction. 2020;160(4):561–578. doi:10.1530/REP-20-0249.
  • Xue Q, Chen Q, Wang M, Liu L. Radioprotective effects of gallic acid on bone marrow cells in mice. Wei Sheng Yan Jiu= J Hyg Res. 2022;51(1):91–98.
  • Nouri A, Heibati F, Heidarian E. Gallic acid exerts anti-inflammatory, anti-oxidative stress, and nephroprotective effects against paraquat-induced renal injury in male rats. Naunyn-Schmiedeberg’s archives of pharmacology, 2021. Naunyn Schmiedebergs Arch Pharmacol. 2021;394(1):1–9. doi:10.1007/s00210-020-01931-0.
  • Zarei M, Sarihi A, Zamani A, Raoufi S, Karimi SA, Ramezani-Aliakbari F. Mitochondrial biogenesis and apoptosis as underlying mechanisms involved in the cardioprotective effects of gallic acid against D-galactose-induced aging. Mol Biol Rep. 2023;50(10):8005–8014. doi:10.1007/s11033-023-08670-4.
  • Altındağ F, Meydan İ. Evaluation of protective effects of gallic acid on cisplatin-induced testicular and epididymal damage. Andrologia. 2021;53(10):e14189. doi:10.1111/and.14189.
  • Doğan D, Meydan İ, Kömüroğlu AU, Wan C. Protective effect of silymarin and gallic acid against cisplatin-induced nephrotoxicity and hepatotoxicity. Int J Clin Pract. 2022;2022:1–10. doi:10.1155/2022/6541026.
  • Ramkumar K, Vijayakumar RS, Vanitha P, Suganya N, Manjula C, Rajaguru P, et al. Protective effect of gallic acid on alloxan-induced oxidative stress and osmotic fragility in rats. Hum Exp Toxicol. 2014;33(6):638–649. doi:10.1177/0960327113504792.
  • Dehghani MA, Maram NS, Moghimipour E, Khorsandi L, Mahdavinia M, Mahdavinia M. Protective effect of gallic acid and gallic acid-loaded eudragit-rs 100 nanoparticles on cisplatin-induced mitochondrial dysfunction and inflammation in rat kidney. Biochim Et Biophys Acta (BBA)-Mol Basis Of Disease. 2020;1866(12):165911. doi:10.1016/j.bbadis.2020.165911.
  • Oyagbemi AA, Omobowale TO, Saba AB, Olowu ER, Dada RO, Akinrinde AS. Gallic acid ameliorates cyclophosphamide-induced neurotoxicity in Wistar rats through free radical scavenging activity and improvement in antioxidant defense system. J Diet Suppl. 2016;13(4):402–419. doi:10.3109/19390211.2015.1103827.
  • Mirshekari Jahangiri H, Sarkaki A, Farbood Y, Dianat M, Goudarzi G. Gallic acid affects blood-brain barrier permeability, behaviors, hippocampus local EEG, and brain oxidative stress in ischemic rats exposed to dusty particulate matter. Environ Sci Pollut Res. 2020;27(5):5281–5292. doi:10.1007/s11356-019-07076-9.
  • Authority EFS. Scientific support for preparing an EU position in the 49th session of the codex committee on pesticide residues (CCPR). Efsa J. 2017;15(7):8–39.
  • Bancroft J, Gamble M. Theories and practice of histological techniques. New York, London and Madrid: Churchil Livingstone, 2013;7(12):2768–2773. Elsiever.
  • Kuo J. Processing Plant Tissues for Ultrastructural Study. Electron microscopy: methods and protocols; 2007:pp. 35–45.
  • Mahmoud AMA, Mantawy EM, Wahdan SA, Ammar RM, El-Demerdash E. Vildagliptin restores cognitive function and mitigates hippocampal neuronal apoptosis in cisplatin-induced chemo-brain: imperative roles of AMPK/Akt/creb/bdnf signaling cascades. Biomed & Pharmacother. 2023;159:114238. doi:10.1016/j.biopha.2023.114238.
  • Tresnakova N, Famulari S, Zicarelli G, Impellitteri F, Pagano M, Presti G, et al. Multi-Characteristic Toxicity of Enantioselective Chiral Fungicide Tebuconazole to a Model Organism Mediterranean Mussel Mytilus Galloprovincialis Lamarck, 1819 (Bivalve: Mytilidae). Vol. 862. Science of The Total Environment. Elsevier; 2023:p. 160874.
  • Li S, Sun J, Gao Y, Zou A, Cheng J. Enhanced fungicidal efficacy and improved interfacial properties with the co-delivery of prothioconazole and tebuconazole using polylactic acid microspheres. Pest Management Science. 2023;80(4):1831–1838. doi:10.1002/ps.7913.
  • Othmène YB, Hamdi H, Salem IB, Annabi E, Amara I, Neffati F, et al. Oxidative Stress, DNA Damage and Apoptosis Induced by Tebuconazole in the Kidney of Male Wistar Rat. Vol. 330. Chemico-Biological Interactions. Elsevier; 2020:p. 109114.
  • Hu M-L, Jiang M, Wang P, Mei SR, Lin YF, Hu XZ, et al. Selective solid-phase extraction of tebuconazole in biological and environmental samples using molecularly imprinted polymers. Anal Bioanal Chem. 2007;387(3):1007–1016. doi:10.1007/s00216-006-1004-2.
  • Othmène YB, Hamdi H, Amara I, Abid-Essefi S. Tebuconazole induced oxidative stress and histopathological alterations in adult rat heart. Pestic Biochem Physiol. 2020;170:104671. doi:10.1016/j.pestbp.2020.104671.
  • Chen X, Zhu Q, Huang T, Wang S, Wang Y, Chen X, et al. Pubertal exposure to tebuconazole increases testosterone production via inhibiting testicular aromatase activity in rats. Chemosphere. 2019;230:519–526. doi:10.1016/j.chemosphere.2019.05.122.
  • Jortner BS. The return of the dark neuron. A histological artifact complicating contemporary neurotoxicologic evaluation. Neurotoxicology. 2006;27(4):628–634. doi:10.1016/j.neuro.2006.03.002.
  • Moser V, Barone S Jr, Smialowicz RJ, Harris MW, Davis BJ, Overstreet D. The effects of perinatal tebuconazole exposure on adult neurological, immunological, and reproductive function in rats. Toxicological Sci. 2001;62(2):339–352. doi:10.1093/toxsci/62.2.339.
  • Aragão FB, Bernardes PM, Ferreira A, Ferreira MFDS, Andrade-Vieira, Andrade-Vieira LF. Cyto(geno)toxicity of commercial fungicides based on the active compounds Tebuconazole, difenoconazole, procymidone, and Iprodione in Lactuca sativa L. Water Air Soil Pollut. 2019;230(1):25. doi:10.1007/s11270-019-4080-6.
  • Petricca S, Flati V, Celenza G, Di Gregorio J, Lizzi AR, Luzi C, et al. Tebuconazole and econazole act synergistically in mediating mitochondrial stress, energy imbalance, and sequential activation of autophagy and apoptosis in mouse Sertoli TM4 cells: possible role of AMPK/ULK1 axis. Toxicological Sci. 2019;169(1):209–223. doi:10.1093/toxsci/kfz031.
  • Meyer JN, Leung MC, Rooney JP, Sendoel A, Hengartner MO, Kisby GE, et al. Mitochondria as a target of environmental toxicants. toxicological sciences. Toxicological Sci. 2013;134(1):1–17. doi:10.1093/toxsci/kft102.
  • Meyer JN, Hartman JH, Mello DF. Mitochondrial toxicity. Mitochondrial Toxic Toxicological Sci. 2018;162(1):15–23. doi:10.1093/toxsci/kfy008.
  • Othmène YB, Monceaux K, Belhadef A, Karoui A, Salem IB, Boussabbeh M, et al. Triazole fungicide tebuconazole induces apoptosis through ros-mediated endoplasmic reticulum stress pathway. Environ Toxicol Pharmacol. 2022;94:103919. doi:10.1016/j.etap.2022.103919.
  • Ezeuko Vitalis C, Nwokocha Chukwuemeka R, Mounmbegna Philippe E, Nriagu Chinonso C. Effects of Zingiber officinale on liver function of mercuric chloride-induced hepatotoxicity in adult wistar rats. Electron J Biomed. 2007;3:40–45.
  • Ismail OI, Rashed NA. Riboflavin attenuates tartrazine toxicity in the cerebellar cortex of adult albino rat. Sci Rep. 2022;12(1):19346. doi:10.1038/s41598-022-23894-3.
  • Ben Othmène Y, Monceaux K, Karoui A, Salem IB, Belhadef A, Abid-Essefi S, et al. Tebuconazole induces ros-dependent cardiac cell toxicity by activating DNA damage and mitochondrial apoptotic pathway. Ecotoxicol Environ Saf. 2020;204:111040. doi:10.1016/j.ecoenv.2020.111040.
  • Zhou J, Zhang J, Li F, Liu J. Triazole fungicide tebuconazole disrupts human placental trophoblast cell functions. J Hazard Mater. 2016;308:294–302. doi:10.1016/j.jhazmat.2016.01.055.
  • Luo J. Mechanisms of ethanol-induced death of cerebellar granule cells. The Cerebellum. 2012;11(1):145–154. doi:10.1007/s12311-010-0219-0.
  • Akl H, Vervloessem T, Kiviluoto S, Bittremieux M, Parys JB, De Smedt H, et al. A dual role for the anti-apoptotic bcl-2 protein in cancer: mitochondria versus endoplasmic reticulum. biochimica et biophysica acta (bba)-molecular cell research. Biochim et Biophys Acta (BBA) - Mol Cell Res. 2014;1843(10):2240–2252. doi:10.1016/j.bbamcr.2014.04.017.
  • Zou P, Vervloessem T, Kiviluoto S, Bittremieux M, Parys JB, De Smedt H, et al. Epigallocatechin-3-gallate protects against cisplatin nephrotoxicity by inhibiting the apoptosis in mouse. Int J Clin Exp Pathol. 2014;7(8):4607.
  • Kale J, Osterlund EJ, Andrews DW. BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ. 2018;25(1):65–80. doi:10.1038/cdd.2017.186.
  • Noshy PA, Elhady MA, Khalaf AAA, Kamel MM, Hassanen EI. Ameliorative effect of carvacrol against propiconazole-induced neurobehavioral toxicity in rats. Neurotoxicology. 2018;67:141–149. doi:10.1016/j.neuro.2018.05.005.
  • Bates KA, Fonte J, Robertson TA, Martins RN, Harvey AR. Chronic gliosis triggers Alzheimer’s disease-like processing of amyloid precursor protein. Neuroscience. 2002;113(4):785–796. doi:10.1016/S0306-4522(02)00230-0.
  • Li B, Xia M, Zorec R, Parpura V, Verkhratsky A. Astrocytes in heavy metal neurotoxicity and neurodegeneration. Brain Res. 2021;1752:147234. doi:10.1016/j.brainres.2020.147234.
  • Jurga AM, Paleczna M, Kadluczka J, Kuter KZ. Beyond the gfap-astrocyte protein markers in the brain. Biomolecules. 2021;11(9):1361. doi:10.3390/biom11091361.
  • Yu G, Zhang Y, Ning B. Reactive astrocytes in central nervous system injury: subgroup and potential therapy. Front Cell Neurosci. 2021;15:792764. doi:10.3389/fncel.2021.792764.
  • Maiolo L, Guarino V, Saracino E, Convertino A, Melucci M, Muccini M, et al. Glial interfaces: advanced materials and devices to uncover the role of astroglial cells in brain function and dysfunction. Adv Healthc Mater. 2021;10(1):2001268. doi:10.1002/adhm.202001268.
  • Mendes F, Miranda E, Amaral L, Carvalho C, Castro BB, Sousa MJ, et al. Novel yeast-based biosensor for environmental monitoring of tebuconazole. Appl Microbiol Biotechnol. 2024;108(1):1–12. doi:10.1007/s00253-023-12944-z.
  • YeltekÌn AÇ. The responses of cholinergic system in the brain tissue of Van Fish (alburnus tarichi) exposed to antifungal tebuconazole compound toxicity. Aquat Res. 2022;5(2):110–116. doi:10.3153/AR22010.
  • Recknagel RO, Glende EA, Britton RS. Free radical damage and lipid peroxidation. In: Roobert G. Meek, Steadman Harrison, eds. Hepatotoxicology. 2020. Boca Raton: CRC press. 1991:401–436.
  • Hosseinzadeh A, Houshmand G, Kalantar M, Khalili HR, Mehrzadi S, Goudarzi M. Neuroprotective effects of gallic acid against neurotoxicity induced by sodium arsenite in rats. Comp Clin Pathol. 2020;29(3):621–629. doi:10.1007/s00580-020-03097-w.
  • Mansouri MT, Farbood Y, Sameri MJ, Sarkaki A, Naghizadeh B, Rafeirad M. Neuroprotective effects of oral gallic acid against oxidative stress induced by 6-hydroxydopamine in rats. Food Chem. 2013;138(2–3):1028–1033. doi:10.1016/j.foodchem.2012.11.022.
  • Reckziegel P, Dias VT, Benvegnú D, Boufleur N, Barcelos RCS, Segat HJ, et al. Locomotor damage and brain oxidative stress induced by lead exposure are attenuated by gallic acid treatment. Toxicol Lett. 2011;203(1):74–81. doi:10.1016/j.toxlet.2011.03.006.
  • Nabavi SF, Habtemariam S, Jafari M, Sureda A, Nabavi SM. Protective role of gallic acid on sodium fluoride induced oxidative stress in rat brain. Bull Environ Contam Toxicol. 2012;89(1):73–77. doi:10.1007/s00128-012-0645-4.
  • Korani MS, Farbood Y, Sarkaki A, Moghaddam HF, Mansouri MT. Protective effects of gallic acid against chronic cerebral hypoperfusion-induced cognitive deficit and brain oxidative damage in rats. Eur J Pharmacol. 2014;733:62–67. doi:10.1016/j.ejphar.2014.03.044.
  • Thong-Asa W, Wassana C, Sukkasem K, Innoi P, Dechakul M, Timda P. Neuroprotective effect of gallic acid in mice with rotenone-induced neurodegeneration. Exp Anim. 2024;73(3):259–269. doi:10.1538/expanim.23-0165.
  • Hussain F, Tahir A, Jan MS, Fatima N, Sadiq A, Rashid U. Exploitation of the multitarget role of new ferulic and gallic acid derivatives in oxidative stress-related Alzheimer’s disease therapies: design, synthesis and bioevaluation. RSC Adv. 2024;14(15):10304–10321. doi:10.1039/D4RA00766B.
  • Wang H, You S, Wang W, Zeng Y, Su R, Qi W, et al. Laccase-catalyzed soy protein and gallic acid complexation: effects on conformational structures and antioxidant activity. Food Chem. 2022;375:131865. doi:10.1016/j.foodchem.2021.131865.
  • Xiang Z, Guan H, Zhao X, Xie Q, Xie Z, Cai F, et al. Dietary gallic acid as an antioxidant: a review of its food industry applications, health benefits, bioavailability, nano-delivery systems, and drug interactions. Food Res Int. 2024;180:114068. doi:10.1016/j.foodres.2024.114068.
  • Shruthi S, Bhasker Shenoy K. Genoprotective effects of gallic acid against cisplatin induced genotoxicity in bone marrow cells of mice. Toxicol Res (Camb). 2018;7(5):951–958. doi:10.1039/C8TX00058A.
  • Hynes MJ, Coinceanainn MNÓ. The kinetics and mechanisms of the reaction of iron (III) with gallic acid, gallic acid methyl ester and catechin. J Inorg Biochem. 2001;85(2–3):131–142. doi:10.1016/S0162-0134(01)00205-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.