179
Views
3
CrossRef citations to date
0
Altmetric
Articles

The Last Glacial and Holocene history of mountain woodlands in the southern part of the Western Carpathians, with emphasis on the spread of Fagus sylvatica

, , , , , , , & show all

References

  • Bálint M, Ujvárosi L, Theissinger K, Lehrian S, Mészáros N, Pauls SU. 2011. The carpathians as a major diversity hotspot in Europe. In: Zachos FE, Habel JC, editors. Biodiversity hotspots. Berlin (Germany): Springer; p. 189–205.
  • Bennett KD. 1985. The spread of Fagus grandifolia across eastern North America during the last 18000 years. Journal of Biogeography. 12(2):147–164.
  • Beug HJ. 2004. Leitfaden der Pollenbestimmung (für Mitteleuropaund angrezende Gebiete). München (Germany): Verlag Dr. Friedrich Pfiel.
  • Bhagwat SA, Willis KJ. 2008. Species persistence in northerly glacial refugia of Europe: a matter of chance or biogeographical traits? Journal of Biogeography. 35(3):464–482.
  • Birks H. 1989. Holocene isochrone maps and patterns of tree-spreading in the British Isles. Journal of Biogeography. 16(6):503–540.
  • Björkman L, Bradshaw RHW. 1996. The immigration of Fagus sylvatica L and Picea abies (L.) Karst. into a natural forest stand in southern Sweden during the last two thousand years. Journal of Biogeography. 23(2):235–244.
  • Bond G, Kromer B, Beer J, Muscheler R, Evans MN, Showers W, Hoffmann S, Lotti-Bond R, Hajdas I, Bonani G. 2001. Persistent solar influence on North Atlantic climate during the Holocene. Science. 294(5549):2130–2136.
  • Bradshaw RHW, Hannon GE. 2004. The Holocene structure of north-west European temperate forest induced from palaeoecological data. In: Honnay O, Verheyen K, Bossuyt B, Hermy M, editors. Forest biodiversity: lessons from history for conservation. Oxford (UK): CABI Publishing; p. 11–25.
  • Bradshaw RHW, Kito N, Giesecke T. 2010. Factors influencing the Holocene history of Fagus. Forest Ecology and Management. 259(11):2204–2212.
  • Bray JR. 1971. Solar-climate relationships in the post-Pleistocene. Science. 171(3977):1242–1243.
  • Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hostetler SW, McCabe AM. 2009. The last glacial maximum. Science. 325(5941):710–714.
  • Dabkowski J, Frodlová J, Hájek M, Hájková P, Petr L, Fiorillo D, Dudová L, Horsák M. 2019. A complete Holocene climate and environment record for the Western Carpathians (Slovakia) derived from a tufa deposit. The Holocene. 29(3):493–504.
  • Daněk P, Šamonil P, Vrška T. 2019. Four decades of the coexistence of beech and spruce in a Central European old-growth forest. Which succeeds on what soils and why? Plant and Soil. 437(1-2):257–272.
  • Dudová L, Hájek M, Hájková P. 2010. The origin and vegetation development of the Rejvíz pine bog and the history of the surrounding landscape during the Holocene. Preslia. 82:223–246.
  • Dudová L, Hájková P, Buchtová H, Opravilová V. 2013. Formation, succession and landscape history of Central-European summit raised bogs: a multiproxy study from the Hrubý Jeseník Mountains. The Holocene. 23(2):230–242.
  • Dudová L, Hájek M, Petr L, Jankovská V. 2018. Holocene vegetation history of the Jeseníky Mts: deepening elevational contrast in pollen assemblages since late prehistory. Journal of Vegetation Science. 29(3):371–381.
  • Enache MD, Cumming BF. 2006. Tracking recorded fires using charcoal morphology from the sedimentary sequence of Prosser Lake, British Columbia (Canada). Quaternary Research. 65(02):282–292.
  • ESRI 2012. ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute.
  • Feurdean A, Florescu G, Vannière B, Tanţău I, O‘Hara RB, Pfeiffer M, Hutchinson SM, Gałka M, Moskal-del Hoyo M, Hickler T. 2017. Fire has been an important driver of forest dynamics in the Carpathian Mountains during the Holocene. Forest Ecology and Management. 389:15–26.
  • Feurdean A, Parr CL, Tanţău I, Fărcaş S, Marinova E, Perşoiu I. 2013. Biodiversity variability across elevations in the Carpathians: parallel change with landscape openness and land use. The Holocene. 23(6):869–881.
  • Fyfe RM, Woodbridge J, Roberts CN. 2015. From forest to farmland: pollen-inferred land cover change across Europe using the pseudobiomization approach. Global Change Biology. 21(3):1197–1212.
  • Gálová A, Hájková P, Čierniková M, Petr L, Hájek M, Novák J, Rohovec J, Jamrichová E. 2016. Origin of a boreal birch bog woodland and landscape development on a warm low mountain summit at the Carpathian–Pannonian interface. The Holocene. 26(7):1112–1125.
  • Gardner A. 2002. Neolithic to Copper Age woodland impacts in northeast Hungary? Evidence from the pollen and sediment chemistry records. The Holocene. 12(5):541–541.
  • Giesecke T, Hickler T, Kunkel T, Sykes MT, Bradshaw R. 2007. Towards an understanding of the Holocene distribution of Fagus sylvatica L. Journal of Biogeography. 34(1):118–131.
  • Gribova SA, Isachenko TI, Lavrenko EM. 1980. Vegetation of the European part of the USSR. Leningrad (Russia): Nauka.
  • Haas JN, Richoz I, Tinner W, Wick L. 1998. Synchronous Holocene climatic oscillations recorded on the Swiss Plateau and at timberline in the Alps. The Holocene. 83:301–309.
  • Hájek M, Dudová L, Hájková P, Roleček J, Moutelíková J, Jamrichová E, Horsák M. 2016. Contrasting Holocene environmental histories may explain patterns of species richness and rarity in a Central European landscape. Quaternary Science Reviews. 133:48–61.
  • Hájková P, Horsák M, Hájek M, Jankovská V, Jamrichová E, Moutelíková J. 2015. Using multi-proxy palaeoecology to test a relict status of refugial populations of calcareous-fen species in the Western Carpathians. The Holocene. 25(4):702–715.
  • Heiri O, Lotter AF, Lemcke G. 2001. Loss-on-ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology. 25(1):101–110.
  • Holliday VT. 2004. Soils in archaeological research. Oxford University Press, Oxford.
  • Jakab G, Sümegi P. 2010. Preliminary data on the bog surface wetness from the Sirok Nyírjes-tó peat bog, Mátra Mts, Hungary. Central European Geology. 53(1):43–65.
  • Jamrichová E, Gálová A, Gašpar A, Horsák M, Frodlová J, Hájek M, Hajnalová M, Hájková P. 2018. Holocene development of two calcareous spring fens at the Carpathian-Pannonian interface controlled by climate and human impact. Folia Geobotanica. 53(3):243–263.
  • Jamrichová E, Petr L, Jiménez-Alfaro B, Jankovská V, Dudová L, Pokorný P, Kołaczek P, Zernitskaya V, Čierniková M, Břízová E, et al. 2017. Pollen inferred millennial changes in landscape patterns at a major biogeographical interface within Europe. Journal of Biogeography. 44(10):2386–2397.
  • Jamrichová E, Potůčková A, Horsák M, Hajnalová M, Bárta P, Tóth P, Kuneš P. 2014. Early occurrence of temperate oak-dominated forest in the northern part of the little Hungarian plain, SW Slovakia. The Holocene. 24(12):1810–1824.
  • Jamrichová J, Hédl R, Kolář J, Tóth P, Bobek P, Hajnalová M, Procházka J, Kadlec J, Szabó P. 2017. Human impact on open temperate woodlands during the middle Holocene in Central Europe. Review of Palaeobotany and Palynology. 245:55–68.
  • Jankovská V. 1984. Late glacial finds of Pinus cembra L. in the Lubovnianská kotlina Basin. Folia Geobotanica et Phytotaxonomica. 19(3):323–325.
  • Jankovská V. 1988. A reconstruction of the Late-Glacial and Early Holocene evolution of forest vegetation in the Poprad Basin, Czechoslovakia. Folia Geobotanica & Phytotaxonomica. 23(3):303–319.
  • Jankovská V, Pokorný P. 2008. Forest vegetation of the last full-glacial period in the Western Carpathians (Slovakia and Czech Republic). Preslia. 80:307–324.
  • Jiménez-Alfaro B, Girardello M, Chytrý M, Svenning JC, Willner W, Gégout JC, Šilc U. 2018. History and environment shape species pools and community diversity in European beech forests. Nature Ecology & Evolution. 2:483–490.
  • Juggins S. 2016. C2 A program for analysing and visualising palaeoenvironmental data. Version 1.7.7. Newcastle upon Tyne (UK): University of Newcastle.
  • Juřičková L, Horáčková J, Ložek V. 2014. Direct evidence of central European forest refugia during the last glacial period based on mollusc fossils. Quaternary Research. 82(1):222–228.
  • Juřičková L, Pokorný P, Hošek J, Horáčková J, Květoň J, Zahajská P, Jansová A, Ložek V. 2017. Early postglacial recolonisation, refugial dynamics and the origin of a major biodiversity hotspot. A case study from the Malá Fatra mountains, Western Carpathians, Slovakia. The Holocene. 28(4):583–594.
  • Katz NJ, Katz SV, Skobeyeva EI. 1977. Atlas Rastitel’nyh Oostatkov v Torfje (Atlas of plant remains in peats). Moscow (Russia): Nedra.
  • Kołaczek P, Karpińska-Kołaczek M, Marcisz K, Gałka M, Lamentowicz M. 2018. Palaeohydrology and the human impact on one of the largest raised bogs complex in the Western Carpathians (Central Europe) during the last two millennia. The Holocene. 28(4):595–608.
  • Korpel, S. (1995). Die Urwalder der Westkarpaten. Stuttgart, Jena, New York: Gustav Fischer Verlag.
  • Kozáková R, Pokorný P, Peša V, Danielisová A, Čuláková K, Svobodová HS. 2015. Prehistoric human impact in the mountains of Bohemia. Do pollen and archaeological data support the traditional scenario of a prehistoric “wilderness”? Review of Palaeobotany and Palynology. 220:29–43.
  • Krippel E. 1971. Postglaciálny vývoj vegetácie Východného Slovenska (Postglacial development of the vegetation of Slovakia, in Slovak). Geografický Časopis. 23:225–241.
  • Krippel E. 1986. Postglaciálny vývoj vegetácie Slovenska. Bratislava (Slovakia): Veda.
  • Krupiński KM. 1984. Evolution of Late Glacial and Holocene vegetation in the Polish Tatra Mts, based on pollen analysis of sediments of the Przedni Staw Lake. Bulletin of the Polish Academy of Sciences Earth Sciences. 31: 37–48.
  • Küster H. 1997. The role of farming in the postglacial expansion of beech and hornbeam in the oak woodlands of central Europe. The Holocene. 7(2):239–242.
  • Lang G. 1994. Quartäre Vegetationsgeschichte Europas. Methoden und Ergebnisse. Jena (Germany): Gustav Fischer Verlag.
  • Lisitsyna OV, Giesecke T, Hicks S. 2011. Exploring pollen percentage threshold values as an indication for the regional presence of major European trees. Review of Palaeobotany and Palynology. 166(3-4):311–324.
  • Ložek V. 2006. Last Glacial paleoenvironments of the West Carpathians in the light of fossil malacofauna. Sborník geologických Věd. Anthropozoikum. 26:73–84.
  • Ložek V. 2009. Refugia, migrace a brány I. Ohlédnutí za starými problémy. Živa. 4:146–149.
  • Magny M, Haas JN. 2004. A major widespread climatic change around 5300 cal. yr BP at the time of the Alpine Iceman. Journal of Quaternary Science. 19(5):423–430.
  • Magri D. 2008. Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). Journal of Biogeography. 35(3):450–463.
  • Magri D, Vendramin GG, Comps B, Dupanloup I, Geburek T, Gömöry D, Latałowa M, Litt T, Paule L, Roure JM, et al. 2006. A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytologist. 171(1):199–221.
  • Magyari EK, Jakab G, Sümegi P, Szöőr G. 2008. Holocene vegetation dynamics in the Bereg Plain, NE Hungary—the Báb-tava pollen and plant macrofossil record. Acta Geographica Debrecina. 42:1–16.
  • Marcott SA, Shakun JD, Clark PU, Mix AC. 2013. A reconstruction of regional and global temperature for the past 11,300 years. Science. 339(6124):1198–1201.
  • Michalko J, Berta J, Magic D. 1986. Geobotanická mapa ČSSR. Slovenská socialistická republika, textová časť. Bratislava (Slovakia): Veda.
  • Michczyński A, Kołaczek P, Margielewski W, Michczyńska DJ, Obidowicz A. 2013. Radiocarbon age-depth modelling prevents from misinterpretation of vegetation dynamics in the past: case study Wierchomla mire (Polish Outer Carpathians). Radiocarbon 55:1724–1734.
  • Miklós L. 2002. Atlas krajiny Slovenskej republiky 1. Vydanie. Bratislava (Slovakia): MŽP SR, Bratislava, SAŽP.
  • Musil R. 2003. The Middle and Upper Palaeolithic game suite in central and southeastern Europe, in Neanderthals and Modern Humans in the European Landscape during the Last Glaciation, Chapter 10, eds. T.H. van Andel and W. Davies. (McDonald Institute Monographs.) Cambridge: McDonald Institute for Archaeological Research, 167–90.
  • Novotný B. 1986. Encyklopédia archeológie. Obzor. Bratislava.
  • Obidowicz A. 1996. A Late Glacial-Holocene history of the formation of vegetation belts in the Tatra Mts. Acta Palaeobotanica. 36:159–206.
  • O’Brien SR, Mayewski PA, Meeker LD, Meese DA, Twickler MS, Whitlow SI. 1995. Complexity of Holocene climate as reconstructed from a Greenland Ice Core. Science. 270:1962–1964.
  • Pánek T, Hradecký J, Smolková V, Šilhán K, Minár J, Zernitskaya V. 2010. The largest prehistoric landslide in northwestern Slovakia: chronological constraints of the Kykula long-runout landslide and related dammed lakes. Geomorphology. 120(3-4):233–247.
  • Patzelt G. 1977. Der zeitliche Ablauf und das Aussmass Postglazialer Klimaschwankungen in den Alpen. In Frenzel B (Ed.) Dendrochronologie und Postglaziale Klimaschwankungen in Europa. Symposium Uber die Dendrochronologie des Postglazials, Grundlagen und Ergebnisse, (1974: Mainz).
  • Petr L. 2015. Paleolimnologické lokality Západních Karpat a jejich význam pro rekonstrukci životního prostredí pozdního glaciálu a holocénu. Zprávy České Botanické Společnosti. 50:247–265.
  • Petr L, Žáčková P, Grygar TM, Píšková A, Křížek M, Treml V. 2013. Šúr-former Lateglacial and Holocene lake on westernmost margin of Carpathians. Preslia. 85:239–263.
  • Ralska-Jasiewiczowa M, Nalepka D, Goslar T. 2003. Some problems of forest transformation at the transition to the oligocratic/Homo sapiens phase of the Holocene interglacial in northern lowlands of Central Europe. Vegetation History and Archaeobotany. 12(4):233–247.
  • Ramsey CB. 2009. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon. 51:1023–1045.
  • Reille M. 1998. Pollen et spores d´Europe et d´Afrique du nord. Supplement 2. Marseille (France): Laboratorie du Botanique Historique et Palynologie.
  • Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Brown DM, Buck CE, Edwards RL, Friedrich M, et al. 2013. Selection and treatment of data for radiocarbon calibration: an update to the International Calibration (IntCal) criteria. Radiocarbon. 55(4):1923–1945.,
  • Rudner E, Sümegi P, Bajzáth J, Torma A, Jakab G. 2004. The results of wood anatomy, charcoal and fruit and seed analyses. In: Sümegi P, Gulyás S, editors. The geohistory of Bátorliget Marshland. Budapest (Hungary): Archaeolingua Press; p. 173–182.
  • Rybníček K, Rybníčková E. 2002. Vegetation of the Upper Orava region (NW Slovakia) in the last 11000 years. Acta Palaeobotanica. 2:153–170.
  • Rybníček K, Rybníčková E. 2008. Upper Holocene dry land vegetation in the Moravian Slovakian borderland (Czech and Slovak Republic). Vegetation History and Archaeobotany. 17(6):701–711.
  • Rybníček K, Rybníčková E. 2009. Precultural vegetation in the western foothills of the Kremnické vrchy Mts in central Slovakia and its transformation by man. Preslia. 81:423–437.
  • Rybníčková E, Rybníček K. 1989. The Holocene development of the vegetation in the Oravská kotlina Basin. In: Excursion guide book of the 12th IMEQB Brno. p. 122–124.
  • Rybníčková E, Rybníček K. 2006. Pollen and macroscopic analyses of sediments from two lakes in the High Tatra mountains, Slovakia. Vegetation History and Archaeobotany. 26:345–356.
  • Saltré F, Duputié A, Gaucherel C, Chuine I. 2015. How climate, migration ability and habitat fragmentation affect the projected future distribution of European beech. Global Change Biology. 21(2):897–910.
  • Schurman JS, Trotsiuk V, Bače R, Čada V, Fraver S, Janda P, Kulakowski D, Labusova J, Mikoláš M, Nagel TA, et al. 2018. Large-scale disturbance legacies and the climate sensitivity of primary Picea abies forests. Global Change Biology. 24(5):2169–2181.
  • Sokolovský L. 1997. Stručné dejiny Malohontu od roku 1803. Martin (MO): Gradus.
  • Speranza A, Hanke J, van Geel B, Fanta J. 2000. Late-Holocene human impact and peat development in the Cerna Hora bog, Krkonose Mountains, Czech Republic. The Holocene. 10(5):575–585.
  • Starkel L, Michczyńska D, Krąpiec M, Margielewski W, Nalepka D, Pazdur A. 2013. Holocene chrono-climatostratigraphy of Polish terriotory. Geochronometria. 40(1):1–21.
  • Stockmarr J. 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores. 13:615–621.
  • Sugita S, Gaillard MJ, Broström A. 1999. Landscape openness and pollen records: a simulation approach. The Holocene. 9(4):409–421.
  • Sümegi P. 2005. Loess and Upper Paleolithic environment in Hungary. An introduction to the environmental history of Hungary. Nagykovácsi (Hungary): AUREA Kiadó.
  • Sümegi P, Kertész R, Rudner EZ. 2004. Paleoenvironmental history of Hungary. In: Visy, Zs., editor. Hungarian archeology at the turn of the Millenium. Budapest (Hungary): Nemzeti Kulturális Örökség Minisztériumának Kiadványa; p. 51–56.
  • Sweeney CA. 2004. A key for the identification of stomata of the native conifers of Scandinavia. Review of Palaeobotany and Palynology. 128(3-4):281–290.
  • Szczepanek K. 1987. Late-Glacial and Holocene pollen diagrams from Jasiel in the Low Beskid Mts. (The Carpathians). Acta Palaeobotanica. 27:9–26.
  • Tallantire PA. 2002. The early-Holocene spread of hazel (Corylus avellana L.) in Europe north and west of the Alps: an ecological hypothesis. The Holocene. 12(1):81–96.
  • Tanţău I, Feurdean A, de Beaulieu JL, Reille M, Fărcaş S. 2011. Holocene vegetation history in the upper forest belt of the Eastern Romanian Carpathians. Palaeogeography, Palaeoclimatology, Palaeoecology. 309(3-4):281–290.
  • Tinner W, Lotter AF. 2001. Central European vegetation response to abrupt climate change at 8.2 ka. Geology. 29(6):551–554.
  • Tinner W, Lotter AF. 2006. Holocene expansion of Fagus sylvatica and Abies alba in Central Europe: where are we after eight decades of debate? Quaternary Science Reviews. 25(5-6):526–549.
  • Vera F. 2000. Grazing ecology and forest history. Wallingford (UK): CAB International.
  • Wacnik A, Noryśkiewicz AM, Tylmann W. 2017. Use of modern pollen accumulation rates for verification of Fagus sylvatica in Late Holocene forests. Case study from the Puszcza Borecka Forest (NE Poland). Fragmenta Floristica et Geobotanica. 24:451–468.
  • Wacnik A, Tylmann W, Bonk A, Goslar T, Enters D, Meyer-Jacob C, Grosjean M. 2016. Determining the responses of vegetation to natural processes and human impacts in north-eastern Poland during the last millennium: combined pollen, geochemical and historical data. Vegetation History and Archaeobotany. 25(5):479–498.
  • Walanus A, Nalepka D. 2004. Integration of Late Glacial and Holocene pollen data from Poland. Annales Societatis Geologorum Poloniae. 74:285–294.
  • Walker M J, Berkelhammer M, Björck S, Cwynar LC, Fisher DA, Long AJ, Weiss H. 2012. Formal subdivision of the Holocene Series/Epoch: a Discussion Paper by a Working Group of INTIMATE (Integration of ice‐core, marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy). Journal of Quaternary Science. 27(7):649–659.
  • Wiezik M, Hájková P, Jamrichová E, Hrivnák R, Hájek M. 2019. Pre-industrial composition of woodlands and modern deforestation events in the southern part of the Western Carpathians. Review of Palaeobotany and Palynology. 260:1–15.
  • Willis KJ, Rudner E, Sümegi P. 2000. The full-glacial forests of central and southeastern Europe. Quaternary Research. 53(2):203–213.
  • Willis KJ, van Andel TA. 2004. Trees or no trees? The environments of central and eastern Europe during the Last Glaciation. Quaternary Science Reviews. 23(23-24):2369–2387.
  • Willner W, Di Pietro R, Bergmeier E. 2009. Phytogeographical evidence for post-glacial dispersal limitation of European beech forest species. Ecography. 32(6):1011–1018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.