289
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Lattice Boltzmann simulation of particles agglomeration and rheology in a particulate flow

, , , &
Pages 777-791 | Received 01 Sep 2017, Accepted 02 Oct 2017, Published online: 08 Jan 2018

References

  • Brady, J. Stokesian Dynamics. Annu. Rev. Fluid Mech. 2010, 20(1), 111–157. DOI: 10.1146/annurev.fluid.20.1.111.
  • Aidun, C. K.; Clausen, J. R.; Woodruff, G. W. Lattice-Boltzmann Method for Complex Flows. Annu. Rev. Fluid Mech. 2010, 42, 439–472. DOI: 10.1146/annurev-fluid-121108-145519.
  • Shakib-Manesh, A.; Raiskinmäki, P.; Koponen, A.; Kataja, M.; Timonen, J. Shear Stress in a Couette Flow of Liquid-Particle Suspensions. J. Statistical Phys. 2002, 107, 67–84. DOI: 10.1023/A:1014598201975.
  • Kromkamp, J.; Van Den Ende, D. T. M.; Kandhai, D.; Van Der Sman, R. G. M.; Boom, R. M. Shear-Induced Self-Diffusion and Microstructure in Non-Brownian Suspensions at Non-Zero Reynolds Numbers. J. Fluid Mech. 2005, 529, 253–278. DOI: 10.1017/s0022112005003551.
  • Lee, Y. K.; Ahn, K. H.; Lee, S. J. Local Shear Stress and Its Correlation with Local Volume Fraction in Concentrated Non-Brownian Suspensions: Lattice Boltzmann Simulation. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2014, 90(6), 062317. DOI: 10.1103/physreve.90.062317.
  • Hou, G.; Wang, J.; Layton, A. Numerical Methods for Fluid-Structure Interaction – A Review. Comm. Comput. Phys. 2012, 12(2), 337–377. DOI: 10.4208/cicp.291210.290411s.
  • Mittal, R.; Iaccarino, G. Immersed Boundary Methods. Annu. Rev. Fluid Mech. 2005, 37(1), 239–261. DOI: 10.1146/annurev.fluid.37.061903.175743.
  • Nakayama, Y.; Yamamoto, R. Simulation Method to Resolve Hydrodynamic Interactions in Colloidal Dispersions. Phys. Rev. E 2005, 71(3), 036707. DOI: 10.1103/physreve.71.036707.
  • Jafari, S.; Yamamoto, R.; Rahnama, M. Lattice-Boltzmann Method Combined with Smoothed-Profile Method for particulate suspensions. Phys. Rev. E 2011, 83(2), 026702. DOI: 10.1103/physreve.83.026702.
  • Jahanshahi Javaran, E.; Rahnama, M.; Jafari, S. Particulate Flow Simulation using Lattice Boltzmann Method: A Rheological Study. Adv. Powder Technol. 2014, 25, 1325–1333. DOI: 10.1016/j.apt.2014.03.012.
  • Batchelor, G. K. The Stress System in a Suspension of Force-Free Particles. J. Fluid Mech. 1970, 41(3), 545–570. DOI: 10.1017/s0022112070000745.
  • Hwang, W. R.; Hulsen, M. A.; Meijer, H. E. H. Direct Simulation of Particle Suspensions in Sliding Bi-Periodic Frames. J. Comp. Phys. 2004, 194(2), 742–772. DOI: 10.1016/j.jcp.2003.09.023.
  • Lees, A. W.; Edwards, S. F. The Computer Study of Transport Processes under Extreme Conditions. J. Phys. C Solid State 1972, 5(15), 1921–1929. DOI: 10.1088/0022-3719/5/15/006.
  • Wagner, A. J.; Pagonabarraga, I. Lees-Edwards Boundary Conditions for Lattice Boltzmann. J. Statis. Phys. 2002, 107(1–2), 521–537.
  • Lorenz, E.; Hoekstra, A. G.; Caiazzo, A. Lees-Edwards Boundary Conditions for Lattice Boltzmann Suspension Simulations. Phys. Rev. E 2009, 79(3), 79.036706. DOI: 10.1103/physreve.79.036706.
  • Javaran, E. J.; Rahnama, M.; Jafari, S. Combining Lees-Edwards Boundary Conditions with Smoothed Profile-Lattice Boltzmann Methods to Introduce Shear into Particle Suspensions. Adv. Powder Tech. 2013, 24(6), 1109–1118. DOI: 10.1016/j.apt.2013.03.018.
  • Molina, J. J.; Otomura, K.; Shiba, H.; Kobayashi, H.; Sano, M.; Yamamoto, R. Rheological Evaluation of Colloidal Dispersions using the Smoothed Profile Method: Formulation and Applications. J. Fluid Mech. 2016, 792, 590–619. DOI: 10.1017/jfm.2016.78.
  • Choi, Y. J.; Djilali, N. Direct Numerical Simulations of Agglomeration of Circular Colloidal Particles in Two-Dimensional Shear Flow. Phys. Fluids 2016, 28(1), 13304. DOI: 10.1063/1.4939501.
  • Guo, Z.; Shu, C. Lattice Boltzmann Method and Its Applications in Engineering. Singapore: World Scientific Publication, 2013.
  • Feng, Z. G.; Michaelides, E. E. The Immersed Boundary-Lattice Boltzmann Method for Solving Fluid-Particles Interaction Problems. J. Comp. Phys. 2004, 195(2), 602–628. DOI: 10.1016/j.jcp.2003.10.013.
  • Einstein, A. A New Determination of Molecular Dimensions. Zurich: Annalen Der Physik, 1906.
  • Batchelor, G. K. The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles. J. Fluid Mech. 1977, 83(1), 97–117. DOI: 10.1017/s0022112077001062.
  • Krieger, I. M.; Dougherty, T. J. A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres. Trans. Soc. Rheol. 1959, 3(1), 137–152. DOI: 10.1122/1.548848.
  • Kulkarni, P. M.; Morris, J. F. Suspension Properties at Finite Reynolds Number from Simulated Shear Flow. Phys. Fluids 2008, 20(4), 040602. DOI: 10.1063/1.2911017.
  • Singh, R.; Akhgar, A. R.; Sui, P. C.; Lange, K. J.; Djilali, N. Dual-Beam FIB/SEM Characterization, Statistical Reconstruction, and Pore Scale Modeling of a PEMFC Catalyst Layer. J. Electrochem. Soc. 2014, 161(4), F415–F424. DOI: 10.1149/2.036404jes.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.