1,223
Views
43
CrossRef citations to date
0
Altmetric
Original Articles

Molecular dynamics simulation of four typical surfactants at oil/water interface

, , , , &
Pages 1258-1265 | Received 31 Jul 2017, Accepted 11 Oct 2017, Published online: 27 Nov 2017

References

  • Guo, H.; Li, Y.; Wang, F.; Yu, Z.; Chen, Z.; Wang, Y.; Gao, X. ASP Flooding: Theory and Practice Progress in China. J. Chem. 2017, 2017, 1–18.
  • Biniaz, P.; Farsi, M.; Rahimpour, M. R. Demulsification of WAter in Oil Emulsion Using Ionic Liquids: Statistical Modeling and Optimization. Fuel 2016, 184, 325–333.
  • Guo, J.; Liu, Q.; Li, M.; Wu, Z.; Christy, A. A. The Effect of Alkali on Crude Oil/Water Interfacial Properties and the Stability of Crude Oil Emulsions. Colloids Surf., A 2006, 273, 213–218.
  • Sun, N.; Jing, J.; Jiang, H.; An, Y.; Wu, C.; Zheng, S.; Qi, H. Effects of Surfactants and. Alkalis on the Stability of Heavy-Oil-in-Water Emulsions. SPE J. 2017, 22, 120–129.
  • Zerpa, L. E.; Queipo, N. V.; Pintos, S.; Salager, J. L. An Optimization Methodology of Alkaline-Surfactant-Polymer Flooding Processes Using Field Scale Numerical Simulation and Multiple Surrogates. J. Pet. Sci. Eng. 2005, 47, 197–208.
  • Hirasaki, G. J.; Miller, C. A.; Puerto, M. Recent Advances in Surfactant EOR, IPTC 115386, SPE Annual Technical Conference and Exhibition. September 21–24, Denver, CO, USA; 2008.
  • Rosen, M. J.; Wang, H.; Shen, P.; Zhu, Y. Ultralow Interfacial Tension for Enhanced Oil Recovery at Very Low Surfactant Concentrations. Langmuir 2005, 21, 3749–3756.
  • Pedersen, K. S.; Christensen, P. L.; Shaikh, J. A. Phase Behavior of Petroleum Reservoir Fluids. CRC Press: New York, 2014.
  • Li, N.; Zhang, G.; Ge, J.; Zhang, L.; Liu, X.; Wang, J. Ultra-Low Interfacial Tension Between Heavy Oil and Betaine-Type Amphoteric Surfactants. J. Dispersion Sci. Technol. 2012, 33, 258–264.
  • Zhu, Y. Y.; Zhang, Y.; Jialing, N.; Weidong, L. I. U.; Qingfeng, H. O. U. The Research Progress in the Alkali-Free Surfactant-Polymer Combination Flooding Technique. Pet. Explor. Dev. 2012, 39, 371–376.
  • Zhu, Y. Y.; Qingfeng, H.; Guoqing, J.; Desheng, M. A.; Zhe, W. A. N. G. Current Development and Application of Chemical Combination Flooding Technique. Pet. Explor. Dev. 2013, 40, 96–103.
  • Eow, J. S.; Ghadiri, M.; Sharif, A. O.; Williams, T. J. Electrostatic Enhancement of Coalescence of Water Droplets in Oil: A Review of the Current Understanding. Chem. Eng. J. 2001, 84, 173–192.
  • Eow, J. S.; Ghadiri, M. Electrostatic Enhancement of Coalescence of Water Droplets in Oil: A Review of the Technology. Chem. Eng. J. 2002, 85, 357–368.
  • Chen, Q. G.; Song, C. H.; Liang, W.; Zheng, T. Y.; Liu, Z.; Zhao, Z. S.; Wei, X. L. Kinetics Behavior of Water Droplet Deformation in Emulsified Oil Subjected to Non-Uniform Electric Field. CIESC J. 2015, 66, 954–964.
  • Rivera, J. L.; McCabe, C.; Cummings, P. T. Molecular Simulations of Liquid-Liquid Interfacial Properties: Water–n-Alkane and Water-Methanol–n-Alkane Systems. Phys. Rev. E 2003, 67, 011603.
  • van Buuren, A. R.; de Vlieg, J.; Berendsen, H. J. Structural Properties of 1, 2-diacyl-sn-glycerol in Bulk and at the Water Interface by Molecular Dynamics. Langmuir 1995, 11, 2957–2965.
  • Shi, W. X.; Guo, H. X. Structure, interfacial Properties, and Dynamics of the Sodium Alkyl Sulfate Type Surfactant Monolayer at the Water/Trichloroethylene Interface: A Molecular Dynamics Simulation Study. J. Phys. Chem. B 2010, 114, 6365–6376.
  • Jang, S. S.; Lin, S. T.; Maiti, P. K.; Blanco, M.; Goddard, W. A.; Shuler, P.; Tang, Y. Molecular Dynamics Study of a Surfactant-Mediated Decane-Water Interface: Effect of Molecular Architecture of Alkyl Benzene Sulfonate. J. Phys. Chem. B 2004, 108, 12130–12140.
  • Xiao, H.; Zhen, Z.; Sun, H.; Cao, X.; Li, Z.; Song, X.; Cui, X.; Liu, X. Molecular Dynamics Study of the Water/n-Alkane Interface. Sci. China Chem. 2010, 53, 945–949.
  • Xu, J.; Zhang, Y.; Chen, H.; Wang, P.; Xie, Z.; Yao, Y.; Yan, Y.; Zhang, J. Effect of Surfactant Headgroups on the Oil/Water Interface: An Interfacial Tension Measurement and Simulation Study. J. Mol. Struct. 2013, 1052, 50–56.
  • Shi, R.; Wang, Y. Interpretation for the Structural and Dynamic Changes of Ionic Liquids under an External Electric Field. J. Phys. Chem. B 2013, 117, 5102–5112.
  • Liu, M. T.; Pu, M. F.; Ma, H. W. Chem. Molecular Dynamics Simulation on Adsorbing Behavior of Anionic Gemini Surfactants at Decane/Water Interface. J. Chin. Univ. 2012, 6, 034.
  • Berendsen, H. J.; Postma, J. P.; van Gunsteren, W. F.; Hermans, J. Interaction Models for Water in Relation to Protein Hydration. In Intermolecular Forces, B. Pullman, Ed.; Springer: Netherlands, 1981.
  • Martínez, J. M.; Martínez, L. Packing Optimization for Automated Generation of Complex System’s Initial Configurations for Molecular Dynamics and Docking. J. Comput. Chem. 2003, 24, 819–825.
  • Martínez, L.; Andrade, R.; Birgin, E. G.; Martínez, J. M. PACKMOL: A Package for Building Initial Configurations for Molecular Dynamics Simulations. J. Comput. Chem. 2009, 30, 2157–2164.
  • Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery Jr, J. A. General Atomic and Molecular Electronic Structure System. J. Comput. Chem. 1993, 14, 1347–1363.
  • Dykstra, C.; Frenking, G.; Kim, K.; Scuseria, G. (Eds.). Theory and Applications of Computational Chemistry: The First Forty Years. Elsevier: Netherlands, 2005, 40–52.
  • Singh, U. C.; Kollman, P. A. An Approach to Computing Electrostatic Charges for Molecules. J. Comput. Chem. 1984, 5, 129–145.
  • Malde, A. K.; Zuo, L.; Breeze, M.; Stroet, M.; Poger, D.; Nair, P. C.; Oostenbrink, C.; Mark, A. E. Automated Force Field Topology Builder (ATB) and Repository: Version 1.0. J. Chem. Theory Comput. 2011, 7, 4026–4037.
  • van Gunsteren, W. F.; Billeter, S. R.; Eising, A. A.; Hünenberger, P. H.; Krüger, P. K. H. C.; Mark, A. E.; Scott, W. R. P.; Tironi, I. G. Biomolecular Simulation: The GROMOS96 Manual and User Guide. 1996.
  • Kutzner, C.; Van Der Spoel, D.; Fechner, M.; Lindahl, E.; Schmitt, U. W.; De Groot, B. L.; Grubmüller, H. Speeding Up Parallel GROMACS on High‐Latency Networks. J. Comput. Chem. 2007, 28, 2075–2084.
  • Hess, B.; Kutzner, C.; Van Der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435–447.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.