342
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Single-walled carbon nanotube (SWNT)-carboxymethylcellulose (CMC) dispersions in aqueous solution and electronic transport properties when dried as thin film conductors

ORCID Icon & ORCID Icon
Pages 1613-1626 | Received 04 Feb 2018, Accepted 10 Mar 2018, Published online: 04 Apr 2018

References

  • Ajayan, P.; Ebbesen, T.; Ichihashi, T.; Iijima, S.; Tanigaki, K.; Hiura, H. Opening Carbon Nanotubes with Oxygen and Implications for Filling. Nature 1993, 362, 522–525. DOI: 10.1038/362522a0.
  • Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G. Crystalline Ropes of Metallic Carbon Nanotubes. Science- AAAS-Weekly Paper Edition 1996, 273, 483–487. DOI: 10.1126/science.273.5274.483.
  • Hone, J.; Batlogg, B.; Benes, Z.; Johnson, A. T.; Fischer, J. E. Quantized Phonon Spectrum of Single-Wall Carbon Nanotubes. Science 2000, 289, 1730–1733. DOI: 10.1126/science.289.5485.1730.
  • Yakobson, B. I.; Smalley, R. E. Fullerene Nanotubes: C 1,000,000 and Beyond. Am. Sci. 1997, 85, 324–337. http://www.jstor.org/stable/27856810.
  • Service, R. F. Superstrong Nanotubes Show They are Smart, Too. Science 1998, 281, 940–942. DOI: 10.1126/science.281.5379.940.
  • Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; London: World Scientific: 1998; Vol. 4.
  • Koziol, K.; Boskovic, B. O.; Yahya, N. Synthesis of Carbon Nanostructures by CVD Method. In Carbon and Oxide Nanostructures, Yahya, N., Ed.; Springer: Verlag Berlin Heidelberg, 2010; pp 23–49.
  • Chen, Q.; Saltiel, C.; Manickavasagam, S.; Schadler, L. S.; Siegel, R. W.; Yang, H. Aggregation Behavior of Single-Walled Carbon Nanotubes in Dilute Aqueous Suspension. J. Colloid Interface Sci. 2004, 280, 91–97. DOI: 10.1016/j.jcis.2004.07.028.
  • Elias, A.; Rodriguez-Manzo, J.; McCartney, M.; Golberg, D.; Zamudio, A.; Baltazar, S.; Lopez-Urias, F.; Munoz-Sandoval, E.; Gu, L.; Tang, C. Production and Characterization of Single-Crystal FeCo Nanowires Inside Carbon Nanotubes. Nano Lett. 2005, 5, 467–472. DOI: 10.1021/nl0479583.
  • Okuno, J.; Maehashi, K.; Kerman, K.; Takamura, Y.; Matsumoto, K.; Tamiya, E. Label-Free Immunosensor for Prostate-Specific Antigen Based on Single-Walled Carbon Nanotube Array-Modified Microelectrodes. Biosens. Bioelectron. 2007, 22, 2377–2381. DOI: 10.1016/j.bios.2006.09.038.
  • Vestergaard, M.; Kerman, K.; Tamiya, E. An Overview of Label-Free Electrochemical Protein Sensors. Sensors 2007, 7, 3442–3458. DOI: 10.3390/s7123442.
  • Chen, Y.; Ren, R.; Pu, H.; Guo, X.; Chang, J.; Zhou, G.; Mao, S.; Kron, M.; Chen, J. Field-Effect Transistor Biosensor for Rapid Detection of Ebola Antigen. Sci. Rep. 2017, 7, 10974. DOI: 10.1038/s41598-017-11387-7.
  • Schmidt, R. H.; Kinloch, I. A.; Burgess, A. N.; Windle, A. H. The Effect of Aggregation on the Electrical Conductivity of Spin-Coated Polymer/Carbon Nanotube Composite Films. Langmuir 2007, 23, 5707–5712. DOI: 10.1021/la062794m.
  • Satishkumar, B. C.; Govindaraj, A.; Mofokeng, J.; Subbanna, G. N.; Rao, C.N. R. Novel Experiments with Carbon Nanotubes: Opening, Filling, Closing and Functionalizing Nanotubes. J. Phys. B: At., Mol. Opt. Phys. 1996, 29, 4925–4934. DOI: 10.1088/0953-4075/29/21/006.
  • Zhang, Y.; Shi, Z.; Gu, Z.; Iijima, S. Structure Modification of Single-Wall Carbon Nanotubes. Carbon 2000, 38, 2055–2059. DOI: 10.1016/S0008-6223(00)00047-6.
  • Tchoul, M. N.; Ford, W. T.; Lolli, G.; Resasco, D. E.; Arepalli, S. Effect of Mild Nitric Acid Oxidation on Dispensability, Size, and Structure of Single-Walled Carbon Nanotubes. Chem. Mater. 2007, 19, 5765–5772. DOI: 10.1021/cm071758l.
  • Nakashima, N.; Fujigaya, T. Fundamentals and Applications of Soluble Carbon Nanotubes. Chem. Lett. 2007, 36, 692–697. DOI: 10.1246/cl.2007.692.
  • Fujigaya, T.; Nakashima, N. Methodology for Homogeneous Dispersion of Single-walled Carbon Nanotubes by Physical Modification. Polym. J. 2008, 40, 577–589. DOI: 10.1295/polymj.PJ2008039.
  • Kuznetsova, A.; Popova, I.; Yates Jr, J. T.; Bronikowski, M. J.; Huffman, C. B.; Liu, J.; Smalley, R. E.; Hwu, H. H.; Chen, J. G. Oxygen-Containing Functional Groups on Single-Wall Carbon Nanotubes: NEXAFS and Vibrational Spectroscopic Studies. J. Am. Chem. Soc. 2001, 123, 10699–10704. DOI: 10.1021/ja011021b.
  • Kim, Y. T.; Mitani, T. Competitive Effect of Carbon Nanotubes Oxidation on Aqueous EDLC Performance: Balancing Hydrophilicity and Conductivity. J. Power Sources 2006, 158, 1517–1522. DOI: 10.1016/j.jpowsour.2005.10.069.
  • Sayes, C. M.; Liang, F.; Hudson, J. L.; Mendez, J.; Guo, W.; Beach, J. M.; Moore, V. C.; Doyle, C. D.; West, J. L.; Billups, W. E.; et al. Functionalization Density Dependence of Single-Walled Carbon Nanotubes Cytotoxicity in Vitro. Toxicol. Lett. 2006, 161, 135–142. DOI: 10.1016/j.toxlet.2005.08.011.
  • Bai, Y.; Zhang, Y.; Zhang, J.; Mu, Q.; Zhang, W.; Butch, E. R.; Snyder, S. E.; Yan, B. Repeated Administrations of Carbon Nanotubes in Male Mice Cause Reversible Testis Damage Without Affecting Fertility. Nat. Nanotechnol. 2010, 5, 683–689. DOI: 10.1038/nnano.2010.153.
  • Pasquini, L. M.; Hashmi, S. M.; Sommer, T. J.; Elimelech, M.; Zimmerman, J. B. Impact of Surface Functionalization on Bacterial Cytotoxicity of Single-Walled Carbon Nanotubes. Environ. Sci. Technol. 2012, 46, 6297–6305. DOI: 10.1021/es300514s.
  • Campagnolo, L.; Massimiani, M.; Palmieri, G.; Bernardini, R.; Sacchetti, C.; Bergamaschi, A.; Vecchione, L.; Magrini, A.; Bottini, M.; Pietroiusti, A. Biodistribution and Toxicity of Pegylated Single Wall Carbon Nanotubes in Pregnant Mice. Part. Fibre Toxicol. 2013, 10, 1–13. DOI: 10.1186/1743-8977-10-21.
  • Ren, L.; Zhong, W. Oxidation Reactions Mediated by Single-Walled Carbon Nanotubes in Aqueous Solution. Environ. Sci. Technol. 2010, 44, 6954–6958. DOI: 10.1021/es101821m.
  • Galano, A.; Francisco-Marquez, M.; Martínez, A. Influence of Point Defects on the Free-Radical Scavenging Capability of Single-Walled Carbon Nanotubes. J. Phys. Chem. C 2010, 114, 8302–8308. DOI: 10.1021/jp101544u.
  • Qu, X.; Alvarez, P.J. J.; Li, Q. Photochemical Transformation of Carboxylated Multiwalled Carbon Nanotubes: Role of Reactive Oxygen Species. Environ. Sci. Technol. 2013, 47, 14080–14088. DOI: 10.1021/es4033056.
  • Smith, B.; Yang, J.; Bitter, J. L.; Ball, W. P.; Fairbrother, D. H. Influence of Surface Oxygen on the Interactions of Carbon Nanotubes with Natural Organic Matter. Environ. Sci. Technol. 2012, 46, 12839–12847. DOI: 10.1021/es303157r.
  • Strano, M. S.; Moore, V. C.; Miller, M. K.; Allen, M. J.; Haroz, E. H.; Kittrell, C.; Hauge, R. H.; Smalley, R. E. The Role of Surfactant Adsorption during Ultrasonication in the Dispersion of Single-Walled Carbon Nanotubes. J. Nanosci. Nanotechnol. 2003, 3, 81–86. DOI: 10.1166/jnn.2003.194.
  • Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of Carbon Nanotubes. Chem. Rev. 2006, 106, 1105–1136. DOI: 10.1021/cr050569o.
  • Hsieh, H.-S.; Jafvert, C. T. Reactive Oxygen Species Generation and Dispersant-Dependent Electron Transfer Through Single-Walled Carbon Nanotubes in Water. Carbon 2015, 89, 361–371. DOI: 10.1016/j.carbon.2015.03.052.
  • Smith, C. J.; Shaw, B. J.; Handy, R. D. Toxicity of Single Walled Carbon Nanotubes to Rainbow Trout, (Oncorhynchus Mykiss): Respiratory Toxicity, Organ Pathologies, and Other Physiological Effects. Aquat. Toxicol. 2007, 82, 94–109. DOI: 10.1016/j.aquatox.2007.02.003.
  • Poland, C. A.; Duffin, R.; Kinloch, I.; Maynard, A.; Wallace, W.A. H.; Seaton, A.; Stone, V.; Brown, S.; MacNee, W.; Donaldson, K. Carbon Nanotubes Introduced into the Abdominal Cavity of Mice Show Asbestos-Like Pathogenicity in a Pilot Study. Nat. Nanotechnol. 2008, 3, 423–428. DOI: 10.1038/nnano.2008.111.
  • Sanhueza, L.; Castro, J.; Urzúa, E.; Barrientos, L.; Oyarzun-Ampuero, F.; Pesenti, H.; Shibue, T.; Sugimura, N.; Tomita, W.; Nishide, H.; et al. Photochromic Solid Materials Based on Poly(decylviologen) Complexed with Alginate and Poly(sodium 4-styrenesulfonate). J. Phys. Chem. B 2015, 119(41), 13208–13217. DOI: 10.1021/acs.jpcb.5b05963.
  • Fu, J.; Li, D.; Li, G.; Huang, F.; Wei, Q. Carboxymethyl Cellulose Assisted Immobilization of Silver Nanoparticles onto Cellulose Nanofibers for the Detection of Catechol. J. Electroanal. Chem. 2015, 738, 92–99. DOI: 10.1016/j.jelechem.2014.11.025.
  • Paul, S.; Kang, Y. S.; Yim, J.-H.; Cho, K. Y.; Kim, D.-W. Effect of Surfactant and Coating Method on the Electrical and Optical Properties of Thin Conductive Films Prepared with Single-Walled Carbon Nanotubes. Curr. Appl. Phys. 2010, 10, e101–e104. DOI: 10.1016/j.cap.2010.06.008.
  • Shimizu, M.; Fujii, S.; Tanaka, T.; Kataura, H. Effects of Surfactants on the Electronic Transport Properties of Thin-Film Transistors of Single-Wall Carbon Nanotubes. J. Phys. Chem. C 2013, 117, 11744–11749. DOI: 10.1021/jp3113254.
  • Young, B.; Aminayi, P.; Young, T. Evaluation of Thin Film Nanotube-Antibody Matrix Materials for Potential Integration into Immunodiagnostic Biosensors; WMU Research and Creative Scholars Day, Kalamazoo, MI, 2014. http://scholarworks.wmich.edu/fracaa/38.
  • Aminayi, P.; Young, B. R.; Young, T. L.; Sprowl, L. H.; Joyce, M. K. Inkjet Printing and Surface Treatment of an Optimized Polyurethane-Based Ink Formulation as a Suitable Insulator Over Silver for Contact with Aqueous-Based Fluids in Low-Voltage Applications. J. Coat. Technol. Res. 2017, 14, 641–649. DOI: 10.1007/s11998-016-9882-5.
  • Kaushik, P.; Malik, A. Process Optimization for Efficient Dye Removal by Aspergillus Lentulus FJ172995. J. Hazard. Mater. 2011, 185, 837–843. DOI: 10.1016/j.jhazmat.2010.09.096.
  • Jabasingh, S. A.; Pavithra, G. Response Surface Approach for the Biosorption of Cr6 + Ions by Mucor Racemosus. CLEAN–Soil, Air, Water 2010, 38, 492–499. DOI: 10.1002/clen.200900270.
  • Mehrabani, J.; Noaparast, M.; Mousavi, S.; Dehghan, R.; Ghorbani, A. Process Optimization and Modelling of Sphalerite Flotation from a Low-Grade Zn-Pb Ore Using Response Surface Methodology. Sep. Purif. Technol. 2010, 72, 242–249. DOI: 10.1016/j.seppur.2010.02.005.
  • Ebrahimi, B.; Shojaosadati, S.; Ranaie, S.; Mousavi, S. Optimization and Evaluation of Acetylcholine Esterase Immobilization on Ceramic Packing Using Response Surface Methodology. Process Biochem. 2010, 45, 81–87. DOI: 10.1016/j.procbio.2009.08.007.
  • Islam, M.; Rojas, E.; Bergey, D.; Johnson, A.; Yodh, A. High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water. Nano Lett. 2003, 3, 269–273. DOI: 10.1021/nl025924u.
  • Ren, S. F.; Guo, Y. L. Oxidized Carbon Nanotubes as Matrix for Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometric Analysis of Biomolecules. Rapid Commun. Mass Spectrom. 2005, 19, 255–260. DOI: 10.1002/rcm.1779.
  • Copyright 2017 CHASM Advanced Materials, I., All Rights Reserved. (7, 6) Enriched Single-wall Carbon Nanotubes; Signis: Ed. 480 Neponset Street - Bldg. 6, Canton, MA, 02021. https://docs.wixstatic.com/ugd/1cb1e5_81e8bb96aff64117a5961201c18e50f9.pdf (accessed Mar 8, 2018).
  • Zhivkov, A. M. Electric Properties of Carboxymethyl Cellulose. In Cellulose-Fundamental Aspects, Van Den Ven, T. G. M., Godbout, L., Eds.; Rijeka, Croatia, InTech: 2013. DOI: 10.5772/56935.
  • Hoogendam, C.; De Keizer, A.; Cohen Stuart, M.; Bijsterbosch, B.; Smit, J.; Van Dijk, J.; Van der Horst, P.; Batelaan, J. Persistence Length of Carboxymethyl Cellulose as Evaluated from Size Exclusion Chromatography and Potentiometric Titrations. Macromolecules 1998, 31, 6297–6309. DOI: 10.1021/ma971032i.
  • Salas, C.; Nypelö, T.; Rodriguez-Abreu, C.; Carrillo, C.; Rojas, O. J. Nanocellulose Properties and Applications in Colloids and Interfaces. Curr. Opin. Colloid Interface Sci. 2014, 19, 383–396. DOI: 10.1016/j.cocis.2014.10.003.
  • Olivier, C.; Moreau, C. L.; Bertoncini, P.; Bizot, H.; Chauvet, O.; Cathala, B. Cellulose Nanocrystal-Assisted Dispersion of Luminescent Single-Walled Carbon Nanotubes for Layer-By-Layer Assembled Hybrid Thin Films. Langmuir 2012, 28, 12463–12471. DOI: 10.1021/la302077a.
  • Laurent, C.; Flahaut, E.; Peigney, A. The Weight and Density of Carbon Nanotubes Versus the Number of Walls and Diameter. Carbon 2010, 48, 2994–2996. DOI: 10.1016/j.carbon.2010.04.010.
  • Swartzenruber, L. J. Four-Point Probe Measurement of Non-Uniformities in Semiconductor Sheet Resistivity. Solid State Electron 1964, 7, 413–422. DOI: 10.1016/0038-1101(64)90038-3.
  • Topsoe, H. Geometric Factors in Four Point Resistivity Measurement. Semiconductor division:1968. http://www.iiserkol.ac.in/∼ph324/StudyMaterials/GeometricFactors4ProbeResistivity.PDF (accessed Mar 8, 2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.