613
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Water strider-inspired design of a water walking robot using superhydrophobic Al surface

, , , , , ORCID Icon, & show all
Pages 1840-1847 | Received 05 Feb 2018, Accepted 01 Apr 2018, Published online: 11 Sep 2018

References

  • Dickinson, M. H. Bionics: Biological Insight into Mechanical Design. Proc. Natl Acad. Sci. U.S.A. 1999, 96, 14208–14209. DOI: 10.1073/pnas.96.25.14208.
  • Xu, X.-H.; Zhang, Z.-Z.; Liu, W.-M. Stable Biomimetic Super-Hydrophobic Copper Surface Fabricated by a Simple Wet-Chemical Method. J. Dispers. Sci. Technol. 2010, 31, 488–491. DOI: 10.1080/01932690903213014.
  • Eising, R.; Felippe, A. C.; Domingos, J. B. Physicochemical Investigation of the Association of the Biosurfactants Sodium Cholate and Sodium Dodecanoate with Poly(Ethyleneoxide). J. Dispers. Sci. Technol. 2012, 33, 75–82. DOI: 10.1080/01932691.2010.530094.
  • Li, J.; Ma, Q.-Q.; Xu, S.-L.; Mu, Y.; Miao, Y.-Q. Electrochemical Assay of Methyl Parathion in Homogeneous Reaction Using Water Soluble Films with Immobilized Acetylcholinesterase. J. Dispers. Sci. Technol. 2011, 32, 642–645. DOI: 10.1080/01932691003799928.
  • Yang, J.; Zhang, Z.-Z.; Men, X.-H.; Xu, X.-H. Superoleophobicity of a Material Made from Fluorinated Titania Nanoparticles. J. Dispers. Sci. Technol. 2011, 32, 485–489. DOI: 10.1080/01932691003756787.
  • Song, J.-L.; Huang, S.; Lu, Y.; Bu, X.-W.; Mates, J. E.; Ghosh, A.; Ganguly, R.; Carmalt, C. J.; Parkin, I. P.; Xu, W.-J.; et al. Self-Driven One-Step Oil Removal from Oil Spill on Water via Selective-Wettability Steel Mesh. ACS Appl. Mater. Interfaces 2014, 6, 19858–19865. DOI: 10.1021/am505254j.
  • Lv, T.; Cheng, Z.-J.; Zhang, D.-J.; Zhang, E.-S.; Zhao, Q.-L.; Liu, Y.-Y.; Jiang, L. Superhydrophobic Surface with Shape Memory Micro/Nanostructure and Its Application in Rewritable Chip for Droplet Storage. ACS Nano 2016, 10, 9379–9386. DOI: 10.1021/acsnano.6b04257.
  • Yang, X.-L.; Song, J.-L.; Liu, J.-K.; Liu, X.; Jin, Z.-J. A Twice Electrochemical-Etching Method to Fabricate Superhydrophobic-Superhydrophilic Patterns for Biomimetic Fog Harvest. Sci. Rep. 2017, 7, 8816. DOI: 10.1038/s41598-017-09108-1.
  • Song, J.-L.; Zhao, D.-Y.; Han, Z.-J.; Xu, W.; Lu, Y.; Liu, X.; Liu, B.; Carmalt, C. J.; Deng, X.; Parkin, I. P. Super-Robust Superhydrophobic Concrete. J. Mater. Chem. A 2017, 5, 14542–14550. DOI: 10.1039/c7ta03526h.
  • Shi, Y.-L.; Xiao, X.-Y. Facile Spray-Coating for Fabrication of Superhydrophobic Sio2/PVDF Nanocomposite Coating on Paper Surface. J. Dispers. Sci. Technol. 2016, 37, 640–645. DOI: 10.1080/01932691.2015.1053145.
  • Guo, P.; Zheng, Y.-M.; Wen, M.-X.; Song, C.; Lin, Y.-C.; Jiang, L. Icephobic/anti-Icing Properties of Micro/Nanostructured Surfaces. Adv. Mater. 2012, 24, 2642–2648. DOI: 10.1002/adma.201104412.
  • Zang, D.-M.; Zhu, R.-W.; Zhang, W.; Yu, X.-Q.; Lin, L.; Guo, X.-L.; Liu, M.-J.; Jiang, L. Corrosion‐Resistant Superhydrophobic Coatings on Mg Alloy Surfaces Inspired by Lotus Seedpod. Adv. Funct. Mater. 2017, 27, 1605446. DOI: 10.1002/adfm.201605446.
  • Zhang, J.-P.; Seeger, S. Polyester Materials with Superwetting Silicone Nanofilaments for Oil/Water Separation and Selective Oil Absorption. Adv. Funct. Mater. 2011, 21, 4699–4704. DOI: 10.1002/adfm.201101090.
  • Li, B.-C.; Zhang, J.-P. Polysiloxane/Multiwalled Carbon Nanotubes Nanocomposites and Their Applications as Ultrastable, Healable and Superhydrophobic Coatings. Carbon 2015, 93, 648–658. DOI: 10.1016/j.carbon.2015.05.103.
  • Zhao, X.; Yu, B.; Zhang, J.-P. Transparent and Durable Superhydrophobic Coatings for anti-Bioadhesion. J. Colloid Interface Sci. 2017, 501, 222–230. DOI: 10.1016/j.jcis.2017.04.049.
  • Hu, D. L.; Chan, B.; Bush, J. W. M. The Hydrodynamics of Water Strider Locomotion. Nature 2003, 424, 663–666. DOI: 10.1038/nature01793.
  • Gao, X.-F.; Jiang, L. Water-Repellentlegs of Water Striders. Nature 2004, 432, 36. DOI: 10.1038/432036a.
  • Shi, F.; Wang, Z.; Zhang, X. Combining a Layer-by-Layer Assembling Technique with Electrochemical Deposition of Gold Aggregates to Mimic the Legs of Water Striders. Adv. Mater. 2005, 17, 1005–1009. DOI: 10.1002/adma.200402090.
  • Shi, F.; Niu, J.; Liu, J.-L.; Liu, F.; Wang, Z.-Q.; Feng, X.-Q.; Zhang, X. Towards Understanding Why a Superhydrophobic Coating Is Needed by Water Striders. Adv. Mater. 2007, 19, 2257–2261. DOI: 10.1002/adma.200700752.
  • Bush, J. W. M.; Hu, D. L. Walking on Water: Biolocomotion at the Interface. Annu. Rev. Fluid Mech. 2006, 38, 339–369. DOI: 10.1146/annurev.fluid.38.050304.092157.
  • Hu, D. L.; Bush, J. W. M. The Hydrodynamics of Water-Walking Arthropods. J. Fluid Mech. 2010, 644, 5–33. DOI: 10.1017/S0022112009992205.
  • Feng, X.-Q.; Gao, X.-F.; Wu, Z.-N.; Jiang, L.; Zheng, Q.-S. Superior Water Repellency of Water Strider Legs with Hierarchical Structures: Experiments and Analysis. Langmuir 2007, 23, 4892–4896. DOI: 10.1021/la063039b.
  • Watson, G. S.; Cribb, B. W.; Watson, J. A. Experimental Determination of the Efficiency of Nanostructuring on Non-Wetting Legs of the Water Strider. Acta Biomater. 2010, 6, 4060–4064. DOI: 10.1016/j.actbio.2010.04.016.
  • Dickinson, M. How to Walk on Water. Nature 2003, 424, 621–622. DOI: 10.1038/424621a.
  • Gao, P.; Feng, J. J. A Numerical Investigation of the Propulsion of Water Walkers. J. Fluid Mech. 2011, 668, 363–383. DOI: 10.1017/S0022112010004763.
  • Buhler, O. Impulsive Fluid Forcing and Water Strider Locomotion. J. Fluid Mech. 2007, 573, 211–236. DOI: 10.1017/S002211200600379X.
  • Goodwyn, P. P.; De Souza, E.; Fujisaki, K.; Gorb, S. Moulding Technique Demonstrates the Contribution of Surface Geometry to the Super-Hydrophobic Properties of the Surface of a Water Strider. Acta Biomater. 2008, 4, 766–770. DOI: 10.1016/j.actbio.2008.01.002.
  • Denny, M. W. Paradox Lost: answers and Questions about Walking on Water. J. Exp. Biol. 2004, 207, 1601–1606. DOI: 10.1242/jeb.00908.
  • Goodwyn, P. J. P.; Wang, J.-T.; Wang, Z.-J.; Ji, A.-H.; Dai, Z.-D.; Fujisaki, K. Water Striders: The Biomechanics of Water Locomotion and Functional Morphology of the Hydrophobic Surface (Insecta: Hemiptera-Heteroptera). J. Bionic Eng. 2008, 5, 121–126. DOI: 10.1016/S1672-6529(08)60015-3.
  • Suter, R.; B.; Rosenberg, O.; Loeb, S.; Wildman, H.; Long, J.; H. Locomotion on the Water Surface: Propulsive Mechanisms of the Fisher Spider Dolomedes Triton. J. Exp. Biol. 1997, 200, 2523–2538.
  • Rinoshika, A. Vortical Dynamics in the Wake of Water Strider Locomotion. J. Vis. 2012, 15, 145–153. DOI: 10.1007/s12650-011-0117-7.
  • Zhang, X.-B.; Zhao, J.; Zhu, Q.; Chen, N.; Zhang, M.-W.; Pan, Q. M. Bioinspired Aquatic Microrobot Capable of Walking on Water Surface like a Water Strider. ACS Appl. Mater. Interfaces 2011, 3, 2630–2636. DOI: 10.1021/am200382g.
  • Zhao, J.; Zhang, X.-B.; Chen, N.; Pan, Q. M. Why Superhydrophobicity Is Crucial for a Water-Jumping Microrobot? Experimental and Theoretical Investigations. ACS Appl. Mater. Interfaces 2012, 4, 3706–3711. DOI: 10.1021/am300794z.
  • Koh, J.-S.; Yang, E.; Jung, G.-P.; Jung, S.-P.; Son, J.-H.; Lee, S.-I.; Jablonski, P.-G.; Wood, R.-J.; Kim, H.-Y.; Cho, K.-J. Jumping on Water: Surface Tension-Dominated Jumping of Water Striders and Robotic Insects. Science 2015, 349, 517–521. DOI: 10.1126/science.aab1637.
  • Yang, K.; Liu, G.-F.; Yan, J.-H.; Wang, T.; Zhang, X.-B.; Zhao, J. A Water-Walking Robot Mimicking the Jumping Abilities of Water Striders. Bioinspir. Biomim. 2016, 11, 066002. DOI: 10.1088/1748-3190/11/6/066002.
  • Liu, X.-L.; Gao, J.; Xue, Z.-X.; Chen, L.; Lin, L.; Jiang, L.; Wang, S.-T. Bioinspired Oil Strider Floating at the Oil/Water Interface Supported by Huge Superoleophobic Force. ACS Nano 2012, 6, 5614–5620. DOI: 10.1021/nn301550v.
  • Qin, L.-M.; Zhao, J.; Lei, S.-B.; Pan, Q.-M. A Smart “Strider” Can Float on Both Water and Oils. ACS Appl. Mater. Interfaces 2014, 6, 21355–21362. DOI: 10.1021/am506317h.
  • Ozcan, O.; Wang, H.; Taylor, J. D.; Sitti, M. Stride II: A Water Strider-Inspired Miniature Robot with Circular Footpads. Int. J. Adv. Rob. Syst. 2014, 11, 85. DOI: 10.5772/58701.
  • Gallina, P.; Bulian, G.; Mosetti, G. Water Bouncing Robots: A First Step toward Large-Scale Water Running Robots. Robotica 2016, 34, 1659–1676. DOI: 10.1017/S0263574714002495.
  • Pan, Q.-M.; Liu, J.; Zhu, Q. A Water Strider-like Model with Large and Stable Loading Capacity Fabricated from Superhydrophobic Copper Foils. ACS Appl. Mater. Interfaces 2010, 2, 2026–2030. DOI: 10.1021/am100308z.
  • Vella, D.; Mahadevan, L. The "Cheerios Effect. Am. J. Phys. 2005, 73, 817–825. DOI: 10.1119/1.1898523.
  • Liu, J.-L.; Feng, X.-Q.; Wang, G.-F. Buoyant Force and Sinking Conditions of a Hydrophobic Thin Rod Floating on Water. Phys. Rev. E 2007, 76, DOI: 10.1103/PhysRevE.76.066103.
  • Vella, D.; Lee, D. G.; Kim, H. Y. The Load Supported by Small Floating Objects. Langmuir 2006, 22, 5979–5981. DOI: 10.1021/la060606m.
  • Grzybowski, B. A.; Bowden, N.; Arias, F.; Yang, H.; Whitesides, G. M. Modeling of Menisci and Capillary Forces from the Millimeter to the Micrometer Size Range. J. Phys. Chem. B 2001, 105, 404–412. DOI: 10.1021/jp0026383.
  • Lu, Y.; Song, J.-L.; Liu, X.; Xu, W.-J.; Sun, J.; Xing, Y.-J. Loading Capacity of a Self-Assembled Superhydrophobic Boat Array Fabricated via Electrochemical Method. Micro Nano Lett. 2012, 7, 786–789. DOI: 10.1049/mnl.2012.0435.
  • Keller, J. B. Surface Tension Force on a Partly Submerged Body. Phys. Fluids 1998, 10, 3009–3010. DOI: 10.1063/1.869820.
  • Pan, Q.-M.; Wang, M. Miniature Boats with Striking Loading Capacity Fabricated from Superhydrophobic Copper Meshes. ACS Appl. Mater. Interfaces 2009, 1, 420–423. DOI: 10.1021/am800116d.
  • Ji, X.-Y.; Feng, X.-Q. Buoyancy of a Thin Plate Pressing a Floating Oil Film on Water. Langmuir 2013, 29, 6562–6572. DOI: 10.1021/la400341q.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.