418
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

A stearic acidified-ZnO/methyl polysiloxane/PDMS superhydrophobic coating with good mechanical durability and physical repairability

, &
Pages 1548-1558 | Received 28 Mar 2018, Accepted 27 May 2018, Published online: 30 Aug 2019

References

  • Wang, Z.; Elimelech, M.; Lin, S. Environmental Applications of Interfacial Materials with Special Wettability. Environ. Sci. Technol. 2016, 50, 2132–2150. DOI: 10.1021/acs.est.5b04351.
  • Wang, F. J.; Lei, S.; Ou, J. F.; Xue, M. S.; Li, W. Superhydrophobic Surfaces with Excellent Mechanical Durability and Easy Repairability. Appl. Surf. Sci 2013, 276, 397–400. DOI: 10.1016/j.apsusc.2013.03.104.
  • Cao, W.-T.; Liu, Y.-J.; Ma, M.-G.; Zhu, J.-F. Facile Preparation of Robust and Superhydrophobic Materials for Self-Cleaning and Oil/Water Separation. Colloids Surf. A 2017, 529, 18–25. DOI: 10.1016/j.colsurfa.2017.05.064.
  • Xu, C.-L.; Song, F.; Wang, X.-L.; Wang, Y.-Z. Surface Modification with Hierarchical CuO Arrays toward a Flexible, Durable Superhydrophobic and Self-Cleaning Material. Chem. Eng. J 2017, 313, 1328–1334. DOI: 10.1016/j.cej.2016.11.024.
  • Im, H. J.; Lee, J. H. Comparison of Superhydrophobic Drag Reduction between Turbulent Pipe and Channel Flows. Phys. Fluids 2017, 29, 095101. DOI: 10.1063/1.5000729.
  • Zhao, P.; Wang, L.; Ren, R.; Han, L.; Bi, F.; Zhang, Z.; Han, K.; Weifeng, G. Facile Fabrication of Asphaltene-Derived Graphene-Polyurethane Sponges for Efficient and Selective Oil-Water Separation. J. Dispersion Sci. Technol. 2018, 39, 977–981. DOI: 10.1080/01932691.2017.1379018.
  • Wang, H.; Wang, E.; Liu, Z.; Gao, D.; Yuan, R.; Sun, L.; Zhu, Y. A Novel Carbon Nanotubes Reinforced Superhydrophobic and Superoleophilic Polyurethane Sponge for Selective Oil-Water Separation through a Chemical Fabrication. J. Mater. Chem. A 2015, 3, 266–273. DOI: 10.1039/C4TA03945A.
  • Qian, H.; Xu, D.; Du, C.; Zhang, D.; Li, X.; Huang, L.; Deng, L.; Tu, Y.; Mol, J. M. C.; Terryn, H. A. Dual-Action Smart Coatings with a Self-Healing Superhydrophobic Surface and anti-Corrosion Properties. J. Mater. Chem. A 2017, 5, 2355–2364. DOI: 10.1039/C6TA10903A
  • Xiao, F.; Yuan, S.; Liang, B.; Li, G.; Pehkonen, S. O.; Zhang, T. Superhydrophobic CuO Nanoneedle-Covered Copper Surfaces for Anticorrosion. J. Mater. Chem. A 2015, 3, 4374–4388. DOI: 10.1039/C4TA05730A.
  • Wenzel, R. N. Surface Roughness and Contact Angle. J. Phys. Chem. 1949, 53, 1466–1467. DOI: 10.1021/j150474a015.
  • Cassie, A. B. D.; Baxter, S. Wettability of Porous Surfaces. Trans. Faraday Soc. 1944, 40, 546–551. DOI: 10.1039/TF9444000546.
  • Liu, M.; Hou, Y.; Li, J.; Tie, L.; Guo, Z. An All-Water-Based System for Robust Superhydrophobic Surfaces. J. Colloid Interface Sci 2018, 519, 130–136. DOI: 10.1016/j.jcis.2018.02.055.
  • Wu, X.; Fu, Q.; Kumar, D.; Ho, J. W. C.; Kanhere, P.; Zhou, H.; Chen, Z. Mechanically Robust Superhydrophobic and Superoleophobic Coatings Derived by Sol–Gel Method. Mater. Des 2016, 89, 1302–1309. DOI: 10.1016/j.matdes.2015.10.053.
  • Shi, Y.; Xiao, X. Facile Spray-Coating for Fabrication of Superhydrophobic SiO2/PVDF Nanocomposite Coating on Paper Surface. J. Dispersion Sci. Technol 2016, 37, 640–645. DOI: 10.1080/01932691.2015.1053145.
  • Liu, J.; Xiao, X.; Shi, Y.; Wan, C. Fabrication of a Superhydrophobic Surface from Porous Polymer Using Phase Separation. Appl. Surf. Sci 2014, 297, 33–39. DOI: 10.1016/j.apsusc.2014.01.053.
  • Xue, C.-H.; Li, Y.-R.; Zhang, P.; Ma, J.-Z.; Jia, S.-T. Washable and Wear-Resistant Superhydrophobic Surfaces with Self-Cleaning Property by Chemical Etching of Fibers and Hydrophobization. ACS Appl. Mater. Interfaces 2014, 6, 10153–10161. DOI: 10.1021/am501371b.
  • Huang, Y.; Sarkar, D. K.; Grant Chen, X. Superhydrophobic Aluminum Alloy Aurfaces Prepared by Chemical Etching Process and Their Corrosion Resistance Properties. Appl. Surf. Sci 2015, 356, 1012–1024. DOI: 10.1016/j.apsusc.2015.08.166.
  • Rezaei, S.; Manoucheri, I.; Moradian, R.; Pourabbas, B. One-Step Chemical Vapor Deposition and Modification of Silica Nanoparticles at the Lowest Possible Temperature and Superhydrophobic Surface Fabrication. Chem. Eng. J 2014, 252, 11–16. DOI: 10.1016/j.cej.2014.04.100.
  • Zhuang, A.; Liao, R.; Lu, Y.; Dixon, S. C.; Jiamprasertboon, A.; Chen, F.; Sathasivam, S.; Parkin, I. P.; Carmalt, C. J. Transforming a Simple Commercial Glue into Highly Robust Superhydrophobic Surfaces via Aerosol-Assisted Chemical Vapor Deposition. ACS Appl. Mater. Interfaces 2017, 9, 42327–42335. DOI: 10.1021/acsami.7b13182.
  • Liu, M.; Hou, Y.; Li, J.; Tie, L.; Peng, Y.; Guo, Z. Inorganic Adhesives for Robust, Self-Healing, Superhydrophobic Surfaces. J. Mater. Chem. A 2017, 5, 19297–19305. DOI: 10.1039/C7TA06001G.
  • Wu, Y.; Jia, S.; Qing, Y.; Luo, S.; Liu, M. A Versatile and Efficient Method to Fabricate Durable Superhydrophobic Surfaces on Wood, Lignocellulosic Fiber, Glass, and Metal Substrates. J. Mater. Chem. A 2016, 4, 14111–14121. DOI: 10.1039/C6TA05259B.
  • Lu, Y.; Sathasivam, S.; Song, J.; Crick, C. R.; Carmalt, C. J.; Parkin, I. P. Robust Self-Cleaning Surfaces That Function When Exposed to Either Air or Oil. Science 2015, 347, 1132–1135. DOI: 10.1126/science.aaa0946.
  • Chen, B.; Qiu, J.; Sakai, E.; Kanazawa, N.; Liang, R.; Feng, H. Robust and Superhydrophobic Surface Modification by a “Paint + Adhesive” Method: Applications in Self-Cleaning after Oil Contamination and Oil–Water Separation. ACS Appl. Mater. Interfaces 2016, 8, 17659–17667. DOI: 10.1021/acsami.6b04108.
  • Bai, N.; Li, Q.; Dong, H.; Tan, C.; Cai, P.; Xu, L. A Versatile Approach for Preparing Self-Recovering Duperhydrophobic Coatings. Chem. Eng. J 2016, 293, 75–81. DOI: 10.1016/j.cej.2016.02.023.
  • Si, Y.; Yang, F.; Guo, Z. Bio-Inspired One-Pot Route to Prepare Robust and Repairable Micro-Nanoscale Superhydrophobic Coatings. J. Colloid Interface Sci 2017, 498, 182–193. DOI: 10.1016/j.jcis.2017.03.063.
  • Zhang, X.; Si, Y.; Mo, J.; Guo, Z. Robust Micro-Nanoscale Flowerlike ZnO/Epoxy Resin Superhydrophobic Coating with Rapid Healing Ability. Chem. Eng. J 2017, 313, 1152–1159. DOI: 10.1016/j.cej.2016.11.014.
  • Zhang, J.; Liu, Z.; Liu, J.; E, L.; Liu, Z. Effects of Seed Layers on Controlling of the Morphology of ZnO Nanostructures and Superhydrophobicity of ZnO Nanostructure/Stearic Acid Composite Films. Mater. Chem. Phys 2016, 183, 306–314. DOI: 10.1016/j.matchemphys.2016.08.031.
  • Gurav, A. B.; Latthe, S. S.; Vhatkar, R. S.; Lee, J.-G.; Kim, D.-Y.; Park, J.-J.; Yoon, S. S. Superhydrophobic Surface Decorated with Vertical ZnO Nanorods Modified by Stearic Acid. Ceram. Int 2014, 40, 7151–7160. DOI: 10.1016/j.ceramint.2013.12.052.
  • Qu, M.; Liu, S.; He, J.; Feng, J.; Yao, Y.; Hou, L.; Ma, X. Bioinspired Durable Superhydrophobic Materials with Antiwear Property Fabricated from Quartz Sands and Organosilane. J. Mater. Sci. 2016, 51, 8718–8727. DOI: 10.1007/s10853-016-0134-y.
  • Qu, M.; Yuan, M.; Liu, S.; He, J.; Xue, M.; Liu, X.; Li, S.; He, J. A Versatile and Efficient Method to Fabricate Recyclable Superhydrophobic Composites Based on Brucite and Organosilane. J. Mater. Sci. 2018, 53, 396–408. DOI: 10.1007/s1085.
  • Qing, Y.; Hu, C.; Yang, C.; An, K.; Tang, F.; Tan, J.; Liu, C. Rough Structure of Electrodeposition as a Template for an Ultrarobust Self-Cleaning Surface. ACS Appl. Mater. Interfaces 2017, 9, 16571–16580. DOI: 10.1021/acsami.6b15745.
  • Bai, X.; Xue, C.-H.; Jia, S.-T. Surfaces with Sustainable Superhydrophobicity upon Mechanical Abrasion. ACS Appl. Mater. Interfaces 2016, 8, 28171–28179. DOI: 10.1021/acsami.6b08672.
  • Si, Y.; Guo, Z.; Liu, W. A Robust Epoxy Resins @ Stearic Acid-Mg(OH)2 Micronanosheet Superhydrophobic Omnipotent Protective Coating for Real-Life Applications. ACS Appl. Mater. Interfaces 2016, 8, 16511–16520. DOI: 10.1021/acsami.6b04668.
  • Xie, W.; Xiao, X.; Zhao, Y.; Zhang, W. Preparation of Hydrophobic SiO2@(TiO2/MoS2) Composite Film and Its Self-Cleaning Properties. J. Coat. Technol. Res. 2017, 14, 1147–1158. DOI: 10.1007/s1199.
  • Su, F.; Yao, K. Facile Fabrication of Superhydrophobic Surface with Excellent Mechanical Abrasion and Corrosion Resistance on Copper Substrate by a Novel Method. ACS Appl. Mater. Interfaces 2014, 6, 8762–8770. DOI: 10.1021/am501539b.
  • Levkin, P. A.; Svec, F.; Fréchet, J. M. J. Porous Polymer Coatings: A Versatile Approach to Superhydrophobic Surfaces. Adv. Funct. Mater. 2009, 19, 1993–1998. DOI: 10.1002/adfm.200801916.
  • Chen, L.; Sun, X.; Hang, J.; Jin, L.; Shang, D.; Shi, L. Large-Scale Fabrication of Robust Superhydrophobic Coatings with High Rigidity and Good Flexibility. Adv. Mater. Interfaces 2016, 3, 1500718. DOI: 10.1002/admi.201500718.
  • Yong, J.; Chen, F.; Yang, Q.; Fang, Y.; Huo, J.; Hou, X. Femtosecond Laser Induced Hierarchical ZnO Superhydrophobic Surfaces with Switchable Wettability. Chem. Commun. 2015, 51, 9813–9816. DOI: 10.1039/C5CC02939B.
  • Li, J.; Jing, Z.; Yang, Y.; Zha, F.; Yan, L.; Lei, Z. Reversible Low Adhesive to High Adhesive Superhydrophobicity Transition on ZnO Nanoparticle Surfaces. Appl. Surf. Sci 2014, 289, 1–5. DOI: 10.1016/j.apsusc.2013.10.019.
  • Ren, G.; Song, Y.; Li, X.; Wang, B.; Zhou, Y.; Wang, Y.; Ge, B.; Zhu, X. A Simple Way to an Ultra-Rrobust Superhydrophobic Fabric with Mechanical Stability, UV Durability, and UV Shielding Property. J. Colloid Interface Sci 2018, 522, 57–62. DOI: 10.1016/j.jcis.2018.03.038.
  • Gao, L.; McCarthy, T. J. A Perfectly Hydrophobic Surface (θA/θR = 180°/180°). J. Am. Chem. Soc. 2006, 128, 9052–9053. DOI: 10.1021/ja062943n.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.