308
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis and characterization of aluminium modified graphene oxide: an approach towards defluoridation of potable water

, , , , , & show all
Pages 1101-1109 | Received 15 May 2018, Accepted 01 Jul 2018, Published online: 08 Oct 2018

References

  • WHO. Guidelines for Drinking Water Quality; World Health Organization: Geneva, 2008.
  • Bureau of Indian Standard (BIS). Specifications for Drinking Water, IS: 10500:1991; Bureau of Indian Standards: New Delhi, 1991/2003.
  • Bell, M. C.; Ludwig, T.-G. The Supply of Fluoride to Man: Ingestion from Water. In Fluorides and Human Health, WHO Monograph Series 59, World Health Organization: Geneva, 1970.
  • Sarkar, C.; Pal, S. Ameliorative Effect of Resveratrol against Fluoride Induced Alteration of Thyroid Function in Male Wistar Rats. Biol. Trace Elem. Res. 2014, 162, 278–287. DOI:10.1007/s12011-014-0108-3
  • Dey, S.; Giri, B. Fluoride Fact on Human Health and Health Problems: A Review. Med. & Clin. Rev. 2016, 2, 1–6. DOI:10.21767/2471-299X.1000011
  • Kanduti, D.; Sterbenk, P.; Artnik, B. Fluoride: A Review of Use and Effects on Health. Mater. Sociomed. 2016, 28, 133–137. DOI:10.5455/msm.2016.28.133-137
  • Raj, D.; Shaji, E. Fluoride Contamination in Groundwater Resources of Alleppey, Southern India. Geosci. Front. 2017, 8, 117–124. DOI:10.1016/j.gsf.2016.01.002
  • Sun, Y.; Fang, Q.; Dong, J.; Cheng, X.; Xu, J. Removal of Fluoride Form Drinking Water by Natural Stilbite Zeolite Modified with Fe (III). Desalination 2011, 277, 121–127. DOI:10.1016/j.desal.2011.04.013
  • Ezzeddine, A.; Bedoui, A.; Hannachi, A.; Bensalah, N. Removal of Fluoride from Aluminum Fluoride Manufacturing Wastewater by Precipitation and Adsorption Processes. Desalin Water Treat. 2015, 54, 2280–2292. DOI:10.1080/19443994.2014.899515
  • Malhbtra, S.; Kulkarni, D. N.; Pande, S. P. Effectiveness of Poly Aluminum Chloride (PAC) Vis-a-Vis Alum in the Removal of Fluorides and Heavy Metals. J. Environ. Sci. Health. Part A. 1997, 32, 2563–2574. DOI:10.1080/10934529709376703
  • Ho, L.-N.; Ishihara, T.; Ueshima, S.; Nishiguchi, H.; Takita, Y. Removal of Fluoride from Water through Ion Exchange by Mesoporous Ti Oxohydroxide. J. Colloid. Interface Sci. 2004, 272, 399–403. DOI:10.1016/j.jcis.2003.08.051
  • Huang, H.; Liu, J.; Zhang, P.; Zhang, D.; Gao, F. Investigation on the Simultaneous Removal of Fluoride, Ammonia Nitrogen and Phosphate from Semiconductor Wastewater Using Chemical Precipitation. Chem. Eng. J. 2017, 307, 696–706. DOI:10.1016/j.cej.2016.08.134
  • Ezzeddine, A.; Meftah, N.; Hannachi, A. Removal of Fluoride from an Industrial Wastewater by a Hybrid Process Combining Precipitation and Reverse Osmosis. Desalin Water Treat. 2015, 55, 2618–2625. DOI:10.1080/19443994.2014.959737
  • Zhang, Y. X.; Jia, Y. Fluoride Adsorption on Manganese Carbonate: Ion-Exchange Based on the Surface Carbonate-like Groups and Hydroxyl Groups. J. Colloid. Interface Sci. 2018, 510, 407–417. DOI:10.1016/j.jcis.2017.09.090
  • Sharifuzzaman, M. D.; Yang, H. N.; Park, S. M.; Park, K. J. Performance Comparison of Micro-Nano Bubble, Electro-Oxidation and Ozone Pre-Treatment in Reducing Fluoride from Industrial Wastewater. Eng. Agricult. Environ. Food 2017, 10, 186–190. DOI:10.1016/j.eaef.2017.01.005
  • Silva, J. F. A.; Graça, N. S.; Ribeiro, A. M.; Rodrigues, A. E. Electrocoagulation Process for the Removal of Co-Existent Fluoride, Arsenic and Iron from Contaminated Drinking Water. Sep. Purif. Technol. 2018, 197, 237–243. DOI:10.1016/j.seppur.2017.12.055
  • Emamjomeh, M.-M.; Sivakumar, M.; Varyani, A.-S. Analysis and the Understanding of Fluoride Removal Mechanisms by an Electrocoagulation/Flotation (ECF) Process. Desalination 2011, 275, 102–106. DOI:10.1016/j.desal.2011.02.032
  • Bason, S.; Ben-David, A.; Oren, Y.; Freger, V. Characterization of Ion Transport in the Active Layer of RO and NF Polyamide Membranes. Desalination 2006, 199, 31–33. DOI:10.1016/j.desal.2006.03.137
  • Sharma, P. P.; Yadav, V.; Maru, P. D.; Makwana, B. S.; Sharma, S.; Kulshrestha, V. Mitigation of Fluoride from Brackish Water via Electrodialysis: An Environmentally Friendly Process. Chem. Select 2018, 3, 779–784. DOI:10.1002/slct.201701170
  • Gahlot, S.; Sharma, S.; Kulshrestha, V. Electro-Deionization: An Efficient Way for Removal of Fluoride from Tap Water Using Aluminum Form of Phosphomethylated Resin. Ind. Eng. Chem. Res. 2015, 54, 4664–4671. DOI:10.1021/acs.iecr.5b00369
  • Zuo, Q.; Chen, X.; Li, W.; Chen, G. Combined Electrocoagulation and Electroflotation for Removal of Fluoride from Drinking Water. J. Hazard. Mater. 2008, 159, 452–457. DOI:10.1016/j.jhazmat.2008.02.039
  • Gogoi, C.; Saikia, J.; Sarmah, S.; Sinha, D.; Goswamee, R.-L. Removal of Fluoride from Water by Locally Available Sand Modified with a Coating of Iron Oxides. Water. Air. Soil Pollut. 2018, 229, 118–133. DOI:10.1007/s11270-018-3754-9
  • Mondal, P.; George, S. Removal of Fluoride from Drinking Water Using Novel Adsorbent Magnesia-Hydroxyapatite. Water. Air. Soil Pollut. 2015, 226, 241–255. DOI:10.1007/s11270-015-2515-2
  • Basu, H.; Singhal, R. K.; Pimple, M. V.; Reddy, A. V. R. R. Synthesis and Characterization of Alumina Impregnated Alginate Beads for Fluoride Removal from Potable. Water. Air. Soil Pollut. 2013, 224, 1572–1577. DOI:10.1007/s11270-013-1572-7
  • Yin, H.; Kong, M.; Tang, W. Removal of Fluoride from Contaminated Water Using Natural Calcium-Rich Attapulgite as a Low-Cost Adsorbent. Water. Air. Soil Pollut. 2015, 226, 425–435. DOI:10.1007/s11270-015-2691-0
  • Singh, J.; Singh, P.; Singh, A. Fluoride Ions Vs Removal Technologies: A Study. Arabian J. Chem. 2016, 9, 815–824. DOI:10.1016/j.arabjc.2014.06.005
  • Jahin, H.-S. Fluoride Removal from Water Using Nanoscale Zero-Valent Iron (NZVI). Int. Water Technol. J. 2014, 4, 173–182.
  • Li, Z.; Deng, S.; Zhang, X.; Zhou, W.; Huang, J.; Yu, G. Removal of Fluoride from Water Using Titanium-Based Adsorbents. Front. Environ. Sci. Eng. China 2010, 4, 414–420. DOI:10.1007/s11783-010-0241-y
  • Zhou, J.; Zhu, W.; Yu, J.; Zhang, H.; Zhang, Y.; Lin, X.; Luo, X. Highly Selective and Efficient Removal of Fluoride from Ground Water by Layered Al-Zr-La Tri-Metal Hydroxide. Appl. Surf. Sci. 2018, 435, 920–927. DOI:10.1016/j.apsusc.2017.11.108
  • Kang, D.; Yu, X.; Ge, M. Morphology-Dependent Properties and Adsorption Performance of CeO2 for Fluoride Removal. Chem. Eng. J. 2017, 330, 36–43. DOI:10.1016/j.cej.2017.07.140
  • Arahman, N.; Mulyati, S.; Lubis, M. R.; Takagi, R.; Matsuyama, H. The Removal of Fluoride from Water Based on Applied Current and Membrane Types in Electrodialyis. J. Fluorine Chem. 2016, 191, 97–102. DOI:10.1016/j.jfluchem.2016.10.002
  • Li, Y.-H.; Wang, S.; Zhang, X.; Wei, J.; Xu, C.; Luan, Z.; Wu, D. Adsorption of Fluoride from Water by Aligned Carbon Nanotubes. Mater. Res. Bull. 2003, 38, 469–476. DOI:10.1016/S0025-5408(02)01063-2
  • Atarodi, H.; Faghihian, H.; Kooravand, M. Application of Carbon Nanotubes for Removal of Fluoride from Wastewater. Int. J. Green Nanotechnol. 2012, 4, 394–398. DOI:10.1080/19430892.2012.738960
  • Di, Z.-C.; Li, Y.-H.; Peng, X.-J.; Luan, Z.-K.; Liang, J. Adsorption of Fluoride by Aligned Carbon Nanotubes Supported Ceria Nanoparticles. SSP. 2007, 121–123, 1221–1224. DOI:10.4028/www.scientific.net/SSP.121-123.1221
  • Barathi, M.; Kumar, A. S. K.; Kumar, C. U.; Rajesh, N. Graphene Oxide–Aluminium Oxyhydroxide Interaction and Its Application for the Effective Adsorption of Fluoride. RSC Adv. 2014, 4, 53711–53721. DOI:10.1039/c4ra10006a
  • Liu, L.; Cui, Z.; Ma, Q.; Cui, W.; Zhang, X. One-Step Synthesis of Magnetic Iron–Aluminum Oxide/Graphene Oxide Nanoparticles as a Selective Adsorbent for Fluoride Removal from Aqueous Solution. RSC Adv. 2016, 6, 10783–10791. DOI:10.1039/c5ra23676b
  • Chabot, V.; Higgins, D.; Yu, A.; Xiao, X.; Chen, Z.; Zhang, J. A Review of Graphene and Graphene Oxide Sponge: Material Synthesis and Applications to Energy and the Environment. Energy Environ. Sci. 2014, 7, 1564–1596. DOI:10.1039/C3EE43385D
  • Pan, Q.; Chung, C.-C.; He, N.; Jones, J.-L.; Gao, W. Accelerated Thermal Decomposition of Graphene Oxide Films in Air via in Situ X-Ray Diffraction Analysis. J. Phys. Chem. C 2016, 120, 14984–14990. DOI:10.1021/acs.jpcc.6b05031
  • Sharma, V.; Garg, A.; Sood, S.-C. Graphene Synthesis via Exfoliation of Graphite by Ultrasonication. IJETT 2015, 26, 37–42. DOI:10.14445/22315381/IJETT-V26P208
  • Abdolhosseinzadeh, S.; Asgharzadeh, H.; Kim, H. S. Fast and Fully-Scalable Synthesis of Reduced Graphene Oxide. Sci. Rep. 2015, 5, 10160–10167. DOI:10.1038/srep10160
  • Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. B. T.; Ruoff, R. S. Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon 2007, 45, 1558–1565. DOI:10.1016/j.carbon.2007.02.034
  • Soni, M.; Kumar, P.; Kumar, R.; Sharma, S. K.; Soni, A. Photo-Catalytic Reduction of Oxygenated Graphene Dispersions for Supercapacitor Applications. J. Phys. D: Appl. Phys. 2017, 50, 124003–124008. DOI:10.1088/1361-6463/aa5c9f
  • Yang, H.; Shan, C.; Li, F.; Han, D.; Zhang, Q.; Niu, L. Covalent Functionalization of Polydisperse Chemically Converted Graphene Sheets with Amine-Terminated Ionic Liquid. Chem. Commun. 2009, 26, 3880–3882. DOI:10.1039/B905085J
  • Zhang, H.; Hines, D.; Akins, D.-L. Synthesis of a Nanocomposite Composed of Reduced Graphene Oxide and Gold Nanoparticles. Dalton Trans. 2014, 43, 2670–2675. DOI:10.1039/C3DT52573B
  • Sharma, P. P.; Gahlot, S.; Bhil, B.-M.; Gupta, H.; Kulshrestha, V. An Environmentally Friendly Process for the Synthesis of an fGO Modified Anion Exchange Membrane for Electro-Membrane Applications. RSC Adv. 2015, 5, 38712–38721. DOI:10.1039/C5RA04564A
  • Gahlot, S.; Sharma, P.-P.; Bhil, B.-M.; Gupta, H.; Kulshrestha, V. GO/SGO Based SPES Composite Membranes for the Removal of Water by Pervaporation Separation. Macromol. Symp. 2015, 357, 189–193. DOI:10.1002/masy.201400238
  • Gupta, H.; Paul, P.; Kumar, N.; Baxi, S.; Das, D.-P. One Pot Synthesis of Water-Dispersible Dehydroascorbic Acid Coated Fe3O4 Nanoparticles under Atmospheric Air: Blood Cell Compatibility and Enhanced Magnetic Resonance Imaging. J. Colloid Interface Sci. 2014, 430, 221–228. DOI:10.1016/j.jcis.2014.05.043
  • Derakhshan, A.-A.; Rajabi, L.; Karimnezhad, H. Morphology and Production Mechanism of the Functionalized Carboxylate Alumoxane Micro and Nanostructures. Powder Technol. 2012, 225, 156–166. DOI: 10.1016/j.powtec.2012.04.003
  • Brand, J.; Blajiev, O.; Beentjes, P.-C.-J.; Terryn, H.; de Wit, J.-H.-W. Interaction of Anhydride and Carboxylic Acid Compounds with Aluminum Oxide Surfaces Studied Using Infrared Reflection Absorption Spectroscopy. Langmuir 2004, 20, 6308–6317. DOI:10.1021/la0496845
  • Chandra, V.; Park, J.; Chun, Y.; Lee, J.-W.; Hwang, I.-C.; Kim, K.-S. Water-Dispersible Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal. ACS Nano 2010, 4, 3979–3986. DOI:10.1021/nn1008897
  • Jankovský, O.; Šimek, P.; Sedmidubský, D.; Huber, Š.; Pumera, M.; Sofer, Z. Towards Highly Electrically Conductive and Thermally Insulating Graphene Nanocomposites: Al2O3–Graphene. RSC Adv. 2013, 4, 7418–7424. DOI:10.1039/C3RA45069D
  • Patidar, R.; Rebary, B.; Gupta, H. Application of Non-Fluorescent Carbon Particles as Scavengers for Heavy Metal Ions: A Waste Utilisation Approach. Sep. Sci. Tech. 2016, 51, 1618–1626. DOI:10.1080/01496395.2016.1170037
  • Saravaia, H.; Gupta, H.; Kulshrestha, V. Single Step Synthesis of a Magnesium Doped Lithium Manganese Oxide Ion Sieve Nanomaterial and a SPES/Ion Sieve Composite Membrane for the Separation of Lithium. RSC Adv. 2016, 6, 106980–106989. DOI:10.1039/c6ra14230c

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.