210
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Synergistic interactions between zwitterionic surfactants derived from olive oil and an anionic surfactant

, , , &
Pages 1308-1316 | Received 05 Jun 2018, Accepted 04 Aug 2018, Published online: 08 Oct 2018

References

  • Li, Z. Q.; Yan, H.; Song, X. W.; Yuan, S. L.; Pan, B. L.; Wang, L. J. Structural Properties of Zwitterionic Surfactants Sulbetaine. Acta. Chim. Sinica. 2011, 69(8), 898–904.
  • Nazanin, J.; Behrooz, A.; Farrokh, B. M. Synergism and Performance Optimization in Liquid Detergents Containing Binary Mixtures of Anionic–Nonionic, and Anionic–Cationic Surfactants. J. Surfact. Deterg. 2013, 16(1), 115–121. DOI: 10.1007/s11743-012-1371-y.
  • Zhang, Q. Q.; Cai, B. X.; Gang, H. Z.; Yang, S. Z.; Mu, B. Z. A Family of Novel Bio-Based Zwitterionic Surfactants Derived from Oleic Acid. RSC Adv. 2014, 4(72), 38393–38396. DOI:10.1039/C4RA06851C.
  • Johansson, I.; Svensson, M. Surfactants Based on Fatty Acids and Other Natural Hydrophobes. Curr. Opin. Colloid Interface Sci. 2001, 6(2), 178–188. DOI:10.1016/S1359-0294(01)00076-0.
  • Biermann, U.; Bornscheuer, U.; Meier, M.; Metzger, J.; Scháfer, H. Oils and Fats as Renewable Raw Materials in Chemistry. Angew. Chem. Int. Ed. 2011, 50(17), 3854–3871. DOI:10.1002/anie.201002767.
  • Biswal, N. R.; Paria, S. Interfacial and Wetting Behavior of Natural–Synthetic Mixed Surfactant Systems. RSC Adv. 2014, 4(18), 9182–9188. DOI:10.1039/c3ra41876f.
  • Foley, P.; Kermanshahi pour, A.; Beach, E. S.; Zimmerman, J. B. Derivation and Synthesis of Renewable Surfactants. Chem. Soc. Rev. 2012, 41(4), 1499–1518. DOI:10.1039/C1CS15217C.
  • Qi, L. Y.; Fang, Y.; Wang, Z. Y.; Ma, N.; Jiang, L. Y.; Wang, Y. Y. Synthesis and Physicochemical Investigation of Long Alkylchain Betaine Zwitterionic Surfactant. J. Surfact. Deterg. 2008, 11(1), 55–59. DOI:10.1007/s11743-007-1054-2.
  • Alam, M. S.; Siddiq, A. M.; Mandal, A. B. The Micellization and Clouding Phenomena of a Nonionic Surfactant, Poly (Ethylene Glycol) t-Octylphenyl Ether (Triton X-100): Effect of (Chloride Salt) Electrolytes. J. Disper. Sci. Technol. 2016, 37(9), 1287–1293. DOI:10.1080/01932691.2015.1090319.
  • Alam, M. S.; Siddiq, A. M.; Mandal, A. B. The Micellization and Clouding of Nonionic Surfactant, Poly (Ethylene Glycol) t-Octylphenyl Ether (Triton X-100): Effect of Halide Ions of (Sodium Salt) Electrolytes. J. Disper. Sci. Technol. 2016, 37(10), 1385–1394. DOI:10.1080/01932691.2015.1105751.
  • Gerola, A. P.; Costa, P. F. A.; Nome, F.; Quina, F. Micellization and Adsorption of Zwitterionic Surfactants at the Air/Water Interface. Curr. Opin. Colloid. Interface Sci. 2017, 32, 48–56. DOI:10.1016/j.cocis.2017.09.005.
  • Alam, M. S.; Ragupathy, R.; Mandal, A. B. The Self-Association and Mixed Micellization of an Anionic Surfactant, Sodium Dodecyl Sulfate, and a Cationic Surfactant, Cetyltrimethylammonium Bromide: Conductometric, Dye Solubilization, and Surface Tension Studies. J. Disper. Sci. Technol. 2016, 37(11), 1645–1654. DOI:10.1080/01932691.2015.1120677.
  • Alam, M. S.; Ragupathy, R.; Mandal, A. B. Self-Association, Mixed Micellization, and Thermodynamic Studies of Sodium Dodecyl Sulfate (SDS) and Hexanediyl-1,6-Bis(Dimethylcetylammonium Bromide) (16-6-16). J. Disper. Sci. Technol. 2016, 37(12), 1760–1766. DOI:10.1080/01932691.2016.1138228.
  • Alam, M. S.; Ragupathy, R.; Siddiq, A. M.; Mandal, A. B. Micellization and Mixed Micellization of Cationic Gemini (Dimeric) Surfactants and Cationic Conventional (Monomeric) Surfactants: Conductometric, Dye Solubilization, and Surface Tension Studies. J. Disper. Sci. Technol. 2017, 38(2), 280–287. DOI:10.1080/01932691.2016.1163719.
  • Bakshi, M. S.; Singh, J.; Kaur, G. Antagonistic Mixing Behavior of Cationic Gemini Surfactants and Triblock Polymers in Mixed Micelles. J. Colloid. Interface Sci. 2005, 285(1), 403–412. DOI: 10.1016/j.jcis.2004.11.013.
  • Zhao, J. H.; Dai, C. L.; Ding, Q. F.; Du, M. Y.; Feng, H. S.; Wei, Z. Y.; Chen, A.; Zhao, M. W. The Structure Effect on the Surface and Interfacial Properties of Zwitterionic Sulfobetaine Surfactants for Enhanced Oil Recovery. Rsc Adv. 2015, 5(18), 13993–14001. DOI: 10.1039/C4RA16235H.
  • McLachlan, A. A.; Marangoni, D. G. Interactions between Zwitterionic and Conventional Anionic and Cationic Surfactants. J. Colloid. Interf. Sci. 2006, 295(1), 243–248. DOI: 10.1016/j.jcis.2005.08.008.
  • Dong, S. J.; Li, Y. L.; Song, Y. B.; Zhi, L. F. Synthesis, Characterization and Performance of Unsaturated Long-Chain Carboxybetaine and Hydroxy Sulfobetaine. J. Surfact. Deterg. 2013, 16(4), 523–529. DOI: 10.1007/s11743-013-1441-9.
  • Liu, H. Q.; Hu, J.; Xu, B. C.; Zhao, T. T.; Shi, G. Y.; Zhang, G. J. Synthesis, Surface Activities and Toluene Solubilization by Amine-Oxide Gemini Surfactants. J. Surfact. Deterg. 2016, 19(4), 673–680. DOI: 10.1007/s11743-016-1828-5.
  • Wang, X. Q.; Wang, R. T.; Zheng, Y.; Sun, L. M.; Yu, L.; Jiao, J. J.; Wang, R. Interaction between Zwitterionic Surface Activity Ionic Liquid and Anionic Surfactant: Na+-Driven Wormlike Micelles. J. Phys. Chem. B. 2013, 117(6), 1886–1895. DOI: 10.1021/jp308016a.
  • Bera, A.; Ojha, K.; Mandal, A. Synergistic Effect of Mixed Surfactant Systems on Foam Behavior and Surface Tension. J. Surfact. Deterg. 2013, 16(4), 621–630. DOI: 10.1007/s11743-012-1422-4.
  • Bakshi, M. S.; Singh, K. Synergistic Interactions in the Mixed Micelles of Cationic Gemini with Zwitterionic Surfactants: Fluorescence and Krafft Temperature Studies. J. Colloid. Interface. Sci. 2005, 287(1), 288–297. DOI:10.1016/j.jcis.2005.01.099.
  • Alam, M. S.; Siddiq, A. M.; Mandal, A. B. Effect of (Chloride Salt) Electrolytes on the Mixed Micellization of (Equimolar) a Cationic Gemini (Dimeric) Surfactant and a Cationic Conventional (Monomeric) Surfactant. J. Colloid. Interface. Sci. 2017, 38(2), 303–308. DOI:10.1080/01932691.2016.1164060.
  • Trawinska, A.; Hallmann, E.; MĿdrzycka, K. The Effect of Alkyl Chain Length on Synergistic Effects in Micellization and Surface Tension Reduction in Nonionic Gemini (S-10) and Anionic Surfactants Mixtures. Colloid. Surface. A. 2016, 506(5), 114–126. DOI:10.1016/j.colsurfa.2016.06.001.
  • Yoshimura, T.; Ichinokawa, T.; Kaji, M.; Esumi, K. Synthesis and Surface-Active Properties of Sulfobetaine-Type Zwitterionic Gemini Surfactants. Colloid. Surface. A. 2006, 273(1–3), 208–212. DOI:10.1016/j.colsurfa.2005.08.023.
  • Gu, X. F.; Huo, J.; Wang, R. T.; Wu, D. C.; Yan, Y. L. Synergism in Mixed Zwitterionic Surface Activity Ionic Liquid and Anionic Surfactant Solution: analysis of Interfacial and Micellar Behavior. J. Disper. Sci. Technol. 2015, 36(3), 334–342. DOI:10.1080/01932691.2014.901915.
  • Maneedaeng, A.; Flood, A. E. Synergisms in Binary Mixtures of Anionic and pH-Insensitive Zwitterionic Surfactants and Their Precipitation Behavior with Calcium Ions. J. Surfact. Deterg. 2017, 20(1), 263–275. DOI:10.1007/s11743-016-1902-z.
  • Li, Y.; He, X. J.; Cao, X. L.; Zhao, G. Q.; Tian, X. X.; Cui, X. H. Molecular Behavior and Synergistic Effects between Sodium Dodecylbenzene Sulfonate and Triton X-100 at Oil/Water Interface. J. Colloid. Interface. Sci. 2007, 307(1), 215–220. DOI:10.1016/j.jcis.2006.11.026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.