345
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of phase behavior, microstructure transition and antiradical activity of lavender essential oil-based microemulsions

, , , &
Pages 1360-1367 | Received 04 Jun 2018, Accepted 18 Aug 2018, Published online: 03 Apr 2019

References

  • Lou, Z.; Chen, J.; Yu, F.; Wang, H.; Kou, X.; Ma, C.; Zhu, S. The Antioxidant, Antibacterial, Antibiofilm Activity of Essential Oil from Citrus Medica L. var. sarcodactylis and Its Nanoemulsion. LWT - Food Sci. Technol. 2017, 80, 371–377. doi:10.1016/j.lwt.2017.02.037.
  • Chrysargyris, A.; Panayiotou, C.; Tzortzakis, N. Nitrogen and Phosphorus Levels Affected Plant Growth, Essential Oil Composition and Antioxidant Status of Lavender Plant (Lavandula angustifolia Mill.). Ind. Crops Prod. 2016, 83, 577–586. doi:10.1016/j.indcrop.2015.12.067.
  • Prabuseenivasan, S.; Jayakumar, M.; Ignacimuthu, S. In Vitro Antibacterial Activity of Some Plant Essential Oils. BMC Complement. Altern. Med. 2006, 6, 1–8. doi:10.1186/1472-6882-6-39.
  • Shaaban, H. A. E.; El-Ghorab, A. H.; Shibamoto, T. Bioactivity of Essential Oils and Their Volatile Aroma Components: Review. J. Essent. Oil Res. 2012, 24, 203–212. doi:10.1080/10412905.2012.659528.
  • Mcclements, D. J. Nanoemulsions versus Microemulsions: Terminology, Differences, and Similarities. Soft Matter 2012, 8, 1719–1729. doi:10.1039/c2sm06903b.
  • Zhang, Y.; Liu, X.; Wang, Y.; Jiang, P.; Quek, S. Y. Antibacterial Activity and Mechanism of Cinnamon Essential Oil against Escherichia coli and Staphylococcus aureus. Food Control 2016, 59, 282–289. doi:10.1016/j.foodcont.2015.05.032.
  • Atefeh, A. R.; Soleiman, A. Microemulsion-Based Lycopene Extraction: Effect of Surfactants, Co-Surfactants and Pretreatments. Food Chem. 2016, 197, 1002. doi:10.1016/j.foodchem.2015.11.077
  • Singla, M.; Patanjali, P. K. Phase Behaviour of Neem Oil Based Microemulsion Formulations. Ind. Crops Prod. 2013, 44, 421–426. doi:10.1016/j.indcrop.2012.10.016.
  • Deng, L.; Taxipalati, M.; Sun, P.; Que, F.; Zhang, H. Phase Behavior, Microstructural Transition, Antimicrobial and Antioxidant Activities of a Water-Dilutable Thymol Microemulsion. Colloids Surf. B Biointerfaces 2015, 136, 859–879. doi:10.1016/j.colsurfb.2015.10.031.
  • Kim, S.; Ng, W. K.; Shen, S.; Dong, Y.; Tan, R. B. H. Phase Behavior, Microstructure Transition, and Antiradical Activity of Sucrose Laurate/Propylene Glycol/the Essential Oil of Melaleuca Alternifolia/Water Microemulsions. Colloids Surf. A Physicochem. Eng. Asp. 2009, 348, 289–297. doi:10.1016/j.colsurfa.2009.07.043.
  • Garti, N.; Yaghmur, A.; Leser, M. E.; Clement, V.; Watzke, H. J. Improved Oil Solubilization in Oil/Water Food Grade Microemulsions in the Presence of Polyols and Ethanol. J. Agric. Food Chem. 2001, 49, 2552–2562. doi:10.1021/jf001390b.
  • Yaghmur, A.; Aserin, A.; Garti, N. Phase Behavior of Microemulsions Based on Food-Grade Nonionic Surfactants: Effect of Polyols and Short-Chain Alcohols. Colloids Surf. A Physicochem. Eng. Asp 2002, 209, 71–81. doi:10.1016/s0927-7757(02)00168-1.
  • He, Z.; Zeng, W.; Zhu, X.; Zhao, H.; Lu, Y.; Lu, Z. Influence of Surfactin on Physical and Oxidative Stability of Microemulsions with Docosahexaenoic Acid. Colloids Surf. B Biointerfaces 2017, 151, 232. doi:10.1016/j.colsurfb.2016.12.026.
  • Zhang, H.; Taxipalati, M.; Que, F.; Feng, F. Microstructure Characterization of a Food-Grade U-Type Microemulsion System by Differential Scanning Calorimetry and Electrical Conductivity Techniques. Food Chem. 2013, 141, 3050–3055. doi:10.1016/j.foodchem.2013.05.141.
  • Eicke, H. F.; Meier, W.; Hammerich, H. On Electric Conductivity of Infinite Clusters in Water-in-Oil Microemulsions. Langmuir 1994, 10, 2223–2227. doi:10.1021/la00019a032.
  • Foti, M. C. Use and Abuse of the DPPH• Radical. J. Agric. Food Chem. 2015, 63, 8765–8776. doi:10.1021/acs.jafc.5b03839.
  • Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231. doi:10.1016/s0891-5849(98)00315-3.
  • Luo, J.; Li, L.; Kong, L. Preparative Separation of Phenylpropenoid Glycerides from the Bulbs of Lilium Lancifolium by High-Speed Counter-Current Chromatography and Evaluation of Their Antioxidant Activities. Food Chem. 2012, 131, 1056–1062. doi:10.1016/j.foodchem.2011.09.112.
  • von Corswant, C.; Söderman, O. Effect of Adding Isopropyl Myristate to Microemulsions Based on Soybean Phosphatidylcholine and Triglycerides. Langmuir 1998, 14, 3506–3511. doi:10.1021/la971248d.
  • Fisher, A. A. Reactions to Popular Cosmetic Humectants. Part III. Glycerin, Propylene Glycol, and Butylene Glycol. Cutis 1980, 26, 243–244.
  • Dong, X.; Zhu, Q.; Dai, Y.; He, J.; Pan, H.; Chen, J.; Zheng, Z. P. Encapsulation Artocarpanone and Ascorbic Acid in O/W Microemulsions: Preparation, Characterization, and Antibrowning Effects in Apple Juice. Food Chem. 2016, 192, 1033. doi:10.1016/j.foodchem.2015.07.124.
  • Gradzielski, M. Effect of the Cosurfactant Structure on the Bending Elasticity in Nonionic Oil-in-Water Microemulsions. Langmuir 1998, 14, 6037–6044. doi:10.1021/la980074c.
  • Mukherjee, P.; Padhan, S. K.; Dash, S.; Patel, S.; Mohapatra, P. K.; Mishra, B. K. Effect of Temperature on Pseudoternary System Tween-80-Butanol-Hexane-Water. J. Colloid Interface Sci. 2011, 355, 157–163. doi:10.1016/j.jcis.2010.12.021.
  • Edris, A. E.; Malone, C. F. R. Preferential Solubilization Behaviours and Stability of Some Phenolic-Bearing Essential Oils Formulated in Different Microemulsion Systems. Int. J. Cosmet. Sci. 2012, 34, 441–450. doi:10.1111/j.1468-2494.2012.00737.x.
  • Prieto, C.; Calvo, L. Performance of the Biocompatible Surfactant Tween 80, for the Formation of Microemulsions Suitable for New Pharmaceutical Processing. J. Appl. Chem. 2013, 2013, 1–10. doi:10.1155/2013/930356.
  • Roohinejad, S.; Oey, I.; Wen, J.; Lee, S. J.; Everett, D. W.; Burritt, D. J. Formulation of Oil-in-Water β-Carotene Microemulsions: effect of Oil Type and Fatty Acid Chain Length. Food Chem. 2015, 174, 270–278. doi:10.1016/j.foodchem.2014.11.056.
  • Perlstein, M.; Aserin, A.; Wachtel, E. J.; Garti, N. Propofol Solubilization and Structural Transformations in Dilutable Microemulsion. Colloids Surf. B Biointerfaces. 2015, 136, 282. doi:10.1016/j.colsurfb.2015.08.044.
  • Kalaitzaki, A.; Poulopoulou, M.; Xenakis, A.; Papadimitriou, V. Surfactant-Rich Biocompatible Microemulsions as Effective Carriers of Methylxanthine Drugs. Colloids Surf. A Physicochem. Eng. Asp. 2014, 442, 80–87. doi:10.1016/j.colsurfa.2013.05.055.
  • Xu, J.; Yin, A.; Zhao, J.; Li, D.; Hou, W. Surfactant-Free Microemulsion Composed of Oleic Acid, n-Propanol, and H2O. J. Phys. Chem. B. 2013, 117, 450–456. doi:10.1021/jp310282a.
  • Xu, Z.; Jin, J.; Zheng, M.; Yan, Z.; Xu, X.; Liu, Y.; Wang, X. Co-Surfactant Free Microemulsions: Preparation, Characterization and Stability Evaluation for Food Application. Food Chem. 2016, 204, 194–200. doi:10.1016/j.foodchem.2016.01.073.
  • Hui, Z.; Feng, F.; Li, J.; Xi, Z.; Wei, H.; Li, H.; Wang, H.; Zheng, X. Formulation of Food-Grade Microemulsions with Glycerol Monolaurate: effects of Short-Chain Alcohols, Polyols, Salts and Nonionic Surfactants. Eur. Food Res. Technol. 2008, 226, 613–619. 10.1007/s00217-007-0606-z.
  • Garti, N.; Amar, I.; Yaghmur, A.; Spernath, A.; Aserin, A. Interfacial Modification and Structural Transitions Induced by Guest Molecules Solubilized in U‐Type Nonionic Microemulsions. J. Dispers. Sci. Technol. 2003, 24, 397–410. doi:10.1081/dis-120021797.
  • Amar, I.; Aserin, A.; Garti, N. Microstructure Transitions Derived from Solubilization of Lutein and Lutein Esters in Food Microemulsions. Colloids Surf. B Biointerfaces. 2004, 33, 143–150. doi:10.1016/j.colsurfb.2003.08.009.
  • Yaghmur, A.; Aserin, A.; Tiunova, I.; Garti, N. Sub-Zero Temperature Behaviour of Non-Ionic Microemulsions in the Presence of Propylene Glycol by DSC. J. Therm. Anal. Calorim. 2002, 69, 163–177. doi:10.1023/A:1019997909346
  • Spernath, A.; Aserin, A.; Garti, N. Phase Transition Induced Bywater Dilution in Phospholipid U-Type Food-Grade Microemulsions Studied by DSC. J. Therm. Anal. Calorim. 2006, 83, 297–308. doi:10.1007/s10973-005-7037-5.
  • Choi, H. S.; Sawamura, M.; Spanier, A. M.; Shahidi, F.; Parliment, T. H.; Mussinan, C.; Ho, C. T.; Contis, E. T. Radical-Scavenging Activities of Citrus Essential Oils and Their Components: detection Using 1,1-Diphenyl-2-Picrylhydrazyl. J. Agric. Food Chem. 2000, 48, 4156–4161. doi:10.1021/jf000227d.
  • Rashed, M. M. A.; Tong, Q.; Nagi, A.; Li, J. P.; Khan, N. U.; Chen, L.; Rotail, A.; Bakry, A. M. Isolation of Essential Oil from Lavandula Angustifolia by Using Ultrasonic-Microwave Assisted Method Preceded by Enzymolysis Treatment, and Assessment of Its Biological Activities. Ind. Crops Prod. 2017, 100, 236–245. doi:10.1016/j.indcrop.2017.02.033.
  • Xie, J.; Schaich, K. M. Re-Evaluation of the 2,2-Diphenyl-1-Picrylhydrazyl Free Radical (DPPH) Assay for Antioxidant Activity. J. Agric. Food Chem. 2014, 62, 4251–4260. doi:10.1021/jf500180u.
  • Avanço, G. B.; Ferreira, F. D.; Bomfim, N. S.; Santos, P. A d S R d.; Peralta, R. M.; Brugnari, T.; Mallmann, C. A.; Abreu Filho, B. A d.; Mikcha, J. M. G.; Machinski Jr, M. Curcuma Longa L. essential Oil Composition, Antioxidant Effect, and Effect on Fusarium Verticillioides and Fumonisin Production. Food Control 2017, 73, 806–813. doi:10.1016/j.foodcont.2016.09.032.
  • Cavanagh, H. M. A.; Wilkinson, J. M. Biological Activities of Lavender Essential Oil. Phytother. Res. 2002, 16, 301–308. doi:10.1002/ptr.1103.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.