366
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

In-situ growth hierarchical and superhydrophobic flower-like Cu3(PO4)2·2H2O nanosheets based on copper mesh for efficient oil–water separation

, , , , ORCID Icon &
Pages 1705-1714 | Received 30 Jul 2018, Accepted 30 Sep 2018, Published online: 02 Jan 2019

References

  • Zhong, W.; Zhang, Y.; Wu, Z.; Yang, R.; Chen, X.; Yang, J.; Zhu, L. Health Risk Assessment of Heavy Metals in Freshwater Fish in the Central and Eastern North China. Ecotoxicol. Environ. Saf. 2018, 157, 343–349. DOI:10.1016/j.ecoenv.2018.03.048
  • Guo, P.; Zhai, S. R.; Xiao, Z. Y.; Zhang, F.; An, Q. D.; Song, X. W. Preparation of Superhydrophobic Materials for Oil/Water Separation and Oil Absorption Using PMHS–TEOS-Derived Xerogel and Polystyrene. J. Sol-Gel Sci. Technol. 2014, 72, 385–393. DOI:10.1007/s10971-014-3446-x
  • Li, J.; Kang, R.; Tang, X.; She, H.; Yang, Y.; Zha, F. Superhydrophobic Meshes That Can Repel Hot Water and Strong Corrosive Liquids Used for Efficient Gravity-Driven Oil/Water Separation. Nanoscale 2016, 8, 7638–7645. DOI:10.1039/C6NR01298A
  • Zhang, P.; Chen, H.; Zhang, L.; Zhang, Y.; Zhang, D.; Jiang, L. Stable Slippery Liquid-Infused anti-Wetting Surface at High Temperatures. J. Mater. Chem. A 2016, 4, 12212–12220. DOI:10.1039/C6TA03857C
  • Wang, B.; Liang, W.; Guo, Z.; Liu, W. Biomimetic Super-Lyophobic and Super-Lyophilic Materials Applied for Oil/Water Separation: A New Strategy beyond Nature. Chem. Soc. Rev. 2015, 44, 336–361.
  • Gao, J.; Guo, W.; Feng, D.; Wang, H.; Zhao, D.; Jiang, L. High-Performance Ionic Diode Membrane for Salinity Gradient Power Generation. J. Am. Chem. Soc. 2014, 136, 12265–12272.
  • Gao, L.; Yang, S.; Yang, H.; Ma, T. One‐Stage Method for Fabricating Superhydrophobic Stainless Steel Surface and Its Anti‐Corrosion Performance. Adv. Eng. Mater. 2017, 19, 1–6.
  • Zhou, C.; Cheng, J.; Hou, K.; Zhu, Z.; Zheng, Y. Preparation of CuWO4@Cu2O Film on Copper Mesh by Anodization for Oil/Water Separation and Aqueous Pollutant Degradation. Chem. Eng. J. 2017, 307, 803–811.
  • Krupadam, R. J.; Nesterov, E. E.; Spivak, D. A. Highly Selective Detection of Oil Spill Polycyclic Aromatic Hydrocarbons Using Molecularly Imprinted Polymers for Marine Ecosystems. J. Hazard. Mater. 2014, 274, 1–7.
  • Zhao, T.; Zhang, D.; Yu, C.; Jiang, L. Facile Fabrication of a Polyethylene Mesh for Oil/Water Separation in a Complex Environment. ACS Appl. Mater. Interfaces 2016, 8, 24186–24191.
  • Gao, S. J.; Shi, Z.; Zhang, W. B.; Zhang, F.; Jin, J. Photoinduced Superwetting Single-Walled Carbon Nanotube/TiO(2) Ultrathin Network Films for Ultrafast Separation of Oil-in-Water Emulsions. ACS Nano 2014, 8, 6344–6352.
  • Peng, Y.; Guo, Z. Recent Advances in Biomimetic Thin Membranes Applied in Emulsified Oil/Water Separation. J. Mater. Chem. A 2016, 4, 15749–15770.
  • Liu, L.; Chen, C.; Yang, S.; Xie, H.; Gong, M.; Xu, X. Fabrication of Superhydrophilic-Underwater Superoleophobic Inorganic anti-Corrosive Membranes for High-Efficiency Oil/Water Separation. Phys. Chem. Chem. Phys. 2016, 18, 1317–1325.
  • Gupta, S.; Tai, N.-H. Carbon Materials as Oil Sorbents: A Review on the Synthesis and Performance. J. Mater. Chem. A 2016, 4, 1550–1565.
  • Li, J.; Yan, L.; Tang, X.; Feng, H.; Hu, D.; Zha, F. Robust Superhydrophobic Fabric Bag Filled with Polyurethane Sponges Used for Vacuum-Assisted Continuous and Ultrafast Absorption and Collection of Oils from Water. Adv. Mater. Interfaces 2016, 3, 1500770.
  • Wang, G.; He, Y.; Wang, H.; Zhang, L.; Yu, Q.; Peng, S.; Wu, X.; Ren, T.; Zeng, Z.; Xue, Q. A Cellulose Sponge with Robust Superhydrophilicity and under-Water Superoleophobicity for Highly Effective Oil/Water Separation. Green Chem. 2015, 17, 3093–3099.
  • Zhang, P.; Lin, L.; Zang, D.; Guo, X.; Liu, M. Designing Bioinspired Anti-Biofouling Surfaces based on a Superwettability Strategy. Small 2016, 13, 4.
  • Iglesias, G.; Castro, A.; Fraguela, J. A. Artificial Intelligence Applied to Floating Boom Behavior under Waves and Currents. Ocean Eng. 2010, 37, 1513–1521.
  • Yue, X.; Li, J.; Zhang, T.; Qiu, F.; Yang, D.; Xue, M. In Situ One-Step Fabrication of Durable Superhydrophobic-Superoleophilic Cellulose/LDH Membrane with Hierarchical Structure for Efficiency Oil/Water Separation. Chem. Eng. J. 2017, 328, 117–123.
  • Liu, M.; Wang, S.; Wei, Z.; Song, Y.; Jiang, L. Bioinspired Design of a Superoleophobic and Low Adhesive Water/Solid Interface. Adv. Mater. 2009, 21, 665–669.
  • Ju, J.; Zheng, Y.; Jiang, L. Bioinspired One-Dimensional Materials for Directional Liquid Transport. Acc. Chem. Res. 2014, 47, 2342–2352.
  • Zhu, W.; Feng, X.; Feng, L.; Jiang, L. UV-Manipulated Wettability between Superhydrophobicity and Superhydrophilicity on a Transparent and Conductive SnO2 Nanorod Film. Chem. Commun. 2006, 26, 2753–2755.
  • Yang, Y.; Li, X.; Zheng, X.; Chen, Z.; Zhou, Q.; Chen, Y. 3D-Printed Biomimetic Super-Hydrophobic Structure for Microdroplet Manipulation and Oil/Water Separation. Adv. Mater. 2018, 30, 1704912.
  • Zhao, Y.; Yu, C.; Lan, H.; Cao, M.; Jiang, L. Improved Interfacial Floatability of Superhydrophobic/Superhydrophilic Janus Sheet Inspired by Lotus Leaf. Adv. Funct. Mater. 2017, 27, 1701466.
  • Wen, G.; Guo, Z.; Liu, W. Biomimetic Polymeric Superhydrophobic Surfaces and Nanostructures: From Fabrications to Applications. Nanoscale 2017, 9, 3338–3366.
  • Wang, Q.; Dong, Z.; Yan, X.; Chang, Y.; Ren, L.; Zhou, J. Biomimetic Hydrophobic Surfaces with Low or High Adhesion Based on Poly(vinyl Alcohol) and SiO2 Nanoparticles. J. Bionic Eng. 2017, 14, 476–485.
  • Li, J.; Yan, L.; Li, H.; Li, W.; Zha, F.; Lei, Z. Underwater Superoleophobic Palygorskite Coated Meshes for Efficient Oil/Water Separation. J. Mater. Chem. A 2015, 3, 14696–14702.
  • Li, J.; Li, D.; Yang, Y.; Li, J.; Zha, F.; Lei, Z. A Prewetting Induced Underwater Superoleophobic or Underoil (super) Hydrophobic Waste Potato Residue-Coated Mesh for Selective Efficient Oil/Water Separation. Green Chem. 2016, 18, 541–549.
  • Wen, L.; Tian, Y.; Jiang, L. Bioinspired Super-Wettability from Fundamental Research to Practical Applications. Angew. Chem. Int. Ed. Engl. 2015, 54, 3387–3399.
  • Yue, X.; Zhang, T.; Yang, D.; Qiu, F.; Li, Z.; Zhu, Y.; Yu, H. Oil Removal from Oily Water by a Low-Cost and Durable Flexible Membrane Made of Layered Double Hydroxide Nanosheet on Cellulose Support. J. Clean. Prod. 2018, 180, 307–315.
  • Zang, D.; Zhu, R.; Zhang, W.; Yu, X.; Lin, L.; Guo, X.; Liu, M.; Jiang, L. Corrosion-Resistant Superhydrophobic Coatings on Mg Alloy Surfaces Inspired by Lotus Seedpod. Adv. Funct. Mater. 2017, 27, 1605446.
  • Liu, Y.; Zhan, B.; Zhang, K.; Kaya, C.; Stegmaier, T.; Han, Z.; Ren, L. On-Demand Oil/Water Separation of 3D Fe Foam by Controllable Wettability. Chem. Eng. J. 2018, 331, 278–289.
  • Wang, S.; Liu, K.; Yao, X.; Jiang, L. Bioinspired Surfaces with Superwettability: New Insight on Theory, Design, and Applications. Chem. Rev. 2015, 115, 8230–8293.
  • Si, Y.; Guo, Z. Superhydrophobic Nanocoatings: From Materials to Fabrications and to Applications. Nanoscale 2015, 7, 5922–5946.
  • Hou, X.; Zhang, H.; Jiang, L. Building Bio-Inspired Artificial Functional Nanochannels: From Symmetric to Asymmetric Modification. Angew. Chem. Int. Ed. 2012, 51, 5296–5307.
  • Yang, Y.; Deng, Y.; Tong, Z.; Wang, C. Renewable Lignin-Based Xerogels with Self-Cleaning Properties and Superhydrophobicity. ACS Sustainable Chem. Eng. 2014, 2, 1729–1733.
  • Liu, Y.; Zhang, K.; Son, Y.; Zhang, W.; Spindler, L. M.; Han, Z.; Ren, L. A Smart Switchable Bioinspired Copper Foam Responding to Different pH Droplets for Reversible Oil-Water Separation. J. Mater. Chem. A 2017, 5, 2603–2612.
  • Zulfiqar, U.; Hussain, S. Z.; Awais, M.; Khan, M. M. J.; Hussain, I.; Husain, S. W.; Subhani, T. In-Situ Synthesis of bi-Modal Hydrophobic Silica Nanoparticles for Oil-Water Separation. Colloids Surf A Physicochem. Eng. Asp. 2016, 508, 301–308.
  • Yanqing, Z.; Jifu, S.; Qizhang, H.; Leilei, W.; Gang, X. A Facile Approach for TiO2-Based Superhydrophobic-Superhydrophilic Patterns by UV or Solar Irradiation without a Photomask. Chem. Commun. (Camb.) 2017, 53, 2363–2366.
  • Song, Y.; Liu, Y.; Zhan, B.; Kaya, C.; Stegmaier, T.; Han, Z.; Ren, L. Fabrication of Bioinspired Structured Superhydrophobic and Superoleophilic Copper Mesh for Efficient Oil-Water Separation. J. Bionic Eng. 2017, 14, 497–505.
  • He, L.; Lin, F.; Li, X.; Sui, H.; Xu, Z. Interfacial Sciences in Unconventional Petroleum Production: From Fundamentals to Applications. Chem. Soc. Rev. 2015, 44, 5446–5494.
  • Zhu, Y.; Xie, W.; Zhang, F.; Xing, T.; Jin, J. Superhydrophilic in-Situ-Cross-Linked Zwitterionic Polyelectrolyte/PVDF-Blend Membrane for Highly Efficient Oil/Water Emulsion Separation. ACS Appl. Mater. Interfaces 2017, 9, 9603–9613.
  • Rong, J.; Zhang, T.; Qiu, F.; Xu, J.; Zhu, Y.; Yang, D.; Dai, Y. Design and Preparation of Efficient, Stable and Superhydrophobic Copper Foam Membrane for Selective Oil Absorption and Consecutive Oil–Water Separation. Mater. Design 2018, 142, 83–92.
  • Yu, C.; Cao, M.; Dong, Z.; Li, K.; Yu, C.; Wang, J.; Jiang, L. Aerophilic Electrode with Cone Shape for Continuous Generation and Efficient Collection of H2 Bubbles. Adv. Funct. Mater. 2016, 26, 6830–6835.
  • Dhand, V.; Mittal, G.; Rhee, K. Y.; Park, S.-J.; Hui, D. A Short Review on Basalt Fiber Reinforced Polymer Composites. Compos. Part B: Eng. 2015, 73, 166–180.
  • Yong, J.; Chen, F.; Yang, Q.; Huo, J.; Hou, X. Superoleophobic Surfaces. Chem. Soc. Rev. 2017, 46, 4168–4217.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.