202
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Effect of SO4−2 ion exchanges and initial water saturation on low salinity water flooding (LSWF) in the dolomite reservoir rocks

, , , &
Pages 841-855 | Received 11 Sep 2018, Accepted 28 Apr 2019, Published online: 16 May 2019

References

  • Klemme, H. D.; Ulmishek, G. F. Effective Petroleum Source Rocks of the World: Stratigraphic Distribution and Controlling Depositional Factors. AAPG Bull. 1991, 75, 1809–1851.
  • Jackson, M. D.; Al-Mahrouqi, D.; Vinogradov, J. Zeta Potential in Oil-Water-Carbonate Systems and its Impact on Oil Recovery During Controlled Salinity Water-Flooding, Sci. Rep. 2016, 6, 37363. doi: 10.1038/srep37363.
  • Lager, A.; Webb, K. J.; Black, C. J.; Singleton, M.; Sorbie, K. S. Low Salinity Oil Recovery-an Experimental Investigation. Petrophysics J. 2008, 49, 1–10. ID.SPWLA-2008-v49n1a2.
  • Hendraningrat, L.; Torsaeter, O. Effects of the Initial Rock Wettability on Silica-Based Nanofluid-Enhanced Oil Recovery Processes at Reservoir Temperatures. Energy Fuels. 2014, 28, 6228–6241. . DOI: 10.1021/ef5014049.
  • Nasralla, R. A.; Nasr-El-Din, H. A. Double-layer expansion: is it a primary mechanism of improved oil recovery by low-salinity waterflooding?, Presented at the SPE Improved Oil Recovery Symposium, USA, Tulsa, Oklahoma, April 14, 2012. DOI: 10.2118/154334-MS.
  • Lashkarbolooki, M.; Riazi, M.; Hajibagheri, F.; Ayatollahi, S. Low Salinity Injection into Asphaltenic-Carbonate Oil Reservoir, Mechanistical Study. J. Mol. Liq. 2016, 216, 377–386. DOI: 10.1016/j.molliq.2016.01.051.
  • Seyyedi, M.; Tagliaferri, S.; Abatzis, J.; Nielsen, S. M. An Integrated Experimental Approach to Quantify the Oil Recovery Potential of Seawater and Low-Salinity Seawater Injection in North Sea Chalk Oil Reservoir. Fuel. 2018, 232, 267–278. DOI: 10.1016/j.fuel.2018.05.158.
  • Mahani, H.; Keya, A. L.; Berg, S.; Electro, N.,R. Kinetics of Carbonate/Brine Interface in Low-Salinity Waterflooding: effect of Brine Salinity, Composition, Rock Type, and pH on ζ-Potential and a Surface-Complexation Model. Spe J. 2016, 22, 53–68. DOI: 10.2118/181745-PA.
  • Brady, P. V.; Thyne, G. Functional Wettability in Carbonate Reservoirs. Energy Fuels. 2016, 30, 9217–9225. DOI: 10.1021/acs.energyfuels.6b01895.
  • Gandomkar, A.; Rahimpour, M. R. The Impact of Monovalent and Divalent Ions on Wettability Alteration in Oil/Low Salinity Brine/Limestone Systems. J. Mol. Liq. 2017, 248, 1003–1013. DOI: 10.1016/j.molliq.2017.10.095.
  • Tang, G. Q.; Morrow, N. R. Influence of Brine Composition and Fines Migration on Crude Oil/Brine/Rock Interactions and Oil Recovery. J. Pet. Sci. Eng. 1999, 24, 99–111. DOI: 10.1016/S0920-4105(99)00034-0.
  • McGuire, P. L.; Chatham, J. R.; Paskvan, F. K.; Sommer, D. M.; Carini, F. H. Low salinity oil recovery: an exciting new EOR opportunity for Alaska's North slope, Presented at the SPE Western Regional Meeting, USA, California, March 30, 2005. https://doi.org/10.2118/93903-MS.
  • Lee, S. Y.; Webb, K. J.; Collins, I.; Lager, A.; Clarke, S.; O'Sullivan, M.; Routh, A.; Wang, X. Low salinity oil recovery: increasing understanding of the underlying mechanisms, Presented at the SPE Improved Oil Recovery Symposium, USA, Tulsa, Oklahoma, April 24, 2010. DOI: 10.2118/129722-MS.
  • Xie, Q.; Liu, Y.; Wu, J.; Liu, O. Ions Tuning Water Flooding Experiments and Interpretation by Thermodynamics of Wettability. J. Pet. Sci. Eng. 2014, 124, 350–358. DOI: 10.1016/j.petrol.2014.07.015.
  • Ligthelm, D. J.; Gronsveld, J.; Hofman, J.; Brussee, N.; Marcelis, F.; Van der Linde, H. Novel waterflooding strategy by manipulation of injection brine composition, Presented at the EUROPEC/EAGE Conference and Exhibition, Netherlands, Amsterdam, June 8, 2009. DOI: 10.2118/119835-MS.
  • RezaeiDoust, A.; Puntervold, T.; Strand, S.; Austad, T. Smart Water as Wettability Modifier in Carbonate and Sandstone: A Discussion of Similarities/Differences in the Chemical Mechanisms. Energy Fuels. 2009, 23, 4479–4485. DOI: 10.1021/ef900185q.
  • Sandengen, K.; Kristoffersen, A.; Melhuus, K.; Jøsang, L. O. Osmosis as Mechanism for Low-Salinity Enhanced Oil Recovery. Spe J. 2016, 21, 1227–1235. DOI: 10.2118/179741-PA.
  • Al-Shalabi, E. W.; Sepehrnoori, K. A Comprehensive Review of Low Salinity/Engineered Water Injections and Their Applications in Sandstone and Carbonate Rocks. J. Pet. Sci. Eng. 2016, 139, 137–161. DOI: 10.1016/j.petrol.2015.11.027.
  • Sheng, J. J. Critical Review of Low-Salinity Water Flooding. J. Pet. Sci. Eng. 2014, 120, 216–224. DOI: 10.1016/j.petrol.2014.05.026.
  • Esene, C.; Onalo, D.; Zendehboudi, S.; James, L.; Aborig, A.; Butt, S. Modeling Investigation of LSWI in Sandstone/Carbonates: Effect of Na+ and SO42. Fuel. 2018, 232, 362–373. DOI: 10.1016/j.fuel.2018.05.161.
  • Yousef, A. A.; Al-Saleh, S.; Al-Jawfi, M. S. Improved/enhanced oil recovery from carbonate reservoirs by tuning injection water salinity and ionic content, Presented at the SPE Improved Oil Recovery Symposium, USA, Tulsa, Oklahoma, April 14, 2012. https://doi.org/10.2118/154076-MS.
  • Webb, K. J.; Black, C. J.; Tjetland, G. A Laboratory Study Investigating Methods for Improving Oil Recovery in Carbonates, International Petroleum Technology Conference, Qatar, Doha, November 21, 2005. DOI: 10.2523/IPTC-10506-MS.
  • Al-Attar, H. H.; Mahmoud, M. Y.; Zekri, A. Y.; Almehaideb, R.; Ghannam, M. Low-Salinity Flooding in a Selected Carbonate Reservoir: experimental Approach. J. Petrol. Explor. Prod. Technol. 2013, 3, 139–149. DOI: 10.1007/s13202-013-0052-3.
  • Austad, T.; Strand, S.; Høgnesen, E. J.; Zhang, P. Seawater as IOR fluid in fractured chalk, Presented at the SPE International Symposium on Oilfield Chemistry, USA, Texas, The Woodlands, February 2, 2005. DOI: 10.2118/93000-MS.
  • Austad, T.; Shariatpanahi, S. F.; Strand, S.; Black, C. J. J.; Webb, K. J. Conditions for a Low Salinity Enhanced Oil Recovery (EOR) Effect in Carbonate Oil Reservoirs. Energy Fuels. 2012, 26, 569–575. DOI: 10.1021/ef201435g.
  • Mahani, H.; Keya, A. L.; Berg, S.; Bartels, W. B.; R. Nasralla, R.; Rossen, W. R. Insights into the Mechanism of Wettability Alteration by Low-Salinity Flooding (LSF) in Carbonates. Energy & Fuels. 2015, 29, 1353–1367.. DOI: 10.1021/ef5023847.
  • Hiorth, A.; Cathles, L. M.; Madland, M. V. The Impact of Pore Water Chemistry on Carbonate Surface Charge and Oil Wettability. Transp. Porous Med. 2010, 85, 1–21. DOI: 10.1007/s11242-010-9543-6.
  • Austad, T.; Strand, S.; Madland, M.; Puntervold, T.; Korsnes, R. Seawater in Chalk: An EOR and Compaction Fluid. SPE Res. Eva. Eng. 2008, 1, 648–654. DOI: 10.2118/118431-PA.
  • Van Cappellen, P.; Charlet, l.; Stumm, W.; Wersin, P. A Surface Complexation Model of the Carbonate Mineral-Aqueous Solution Interface. Geochim. Cosmochim. Acta. 1993, 57, 3505–3518. DOI: 10.1016/0016-7037(93)90135-J.
  • Pokrovsky, O. S.; Mielczarski, J. A.; Barres, O.; Schott, J. Surface Speciation Models of Calcite and Dolomite/Aqueous Solution Interfaces and Their Spectroscopic Evaluation. Langmuir. 2000, 16, 2677–2688. DOI: 10.1021/la980905e.
  • Mielczarski, J. A.; Schott, J.; Pokrovsky, O. S. Surface Speciation of Dolomite and Calcite in Aqueous Solutions, Encyclopedia of Surface and Colloid Science, Second Edition, Taylor & Francis, Vol. 8, 5965–5978, 2015.
  • Wolthers, M.; Charlet, L.; Van Cappellen, P. The Surface Chemistry of Divalent Metal Carbonate Minerals, a Critical Assessment of Surface Charge and Potential Data Using the Charge Distribution Multi-Site Ion Complexation Model. Am J Sci. 2008, 308, 905–941. DOI: 10.2475/08.2008.02.
  • Zhang, P.; Austad, T. Wettability and Oil Recovery from Carbonates: Effects of Temperature and Potential Determining Ions. Coll Surf A: Physicochemical Eng Aspects. 2006, 279, 179–187. DOI: 10.1016/j.colsurfa.2006.01.009.
  • Alotaibi, M. B.; Nasr-El-Din, H. A.; Fletcher, J. J. Electrokinetics of Limestone and Dolomite Rock Particles. SPE Res. Eva. Eng. 2011, 14, 594–603. DOI: 10.2118/148701-PA.
  • Chen, L.; Zhang, g.; Wang, L.; Wu, W.; Ge, J. Zeta Potential of Limestone in a Large Range of Salinity. Coll Surf A: Physicochemical Eng Asp. 2014, 450, 1–8. DOI: 10.1016/j.colsurfa.2014.03.006.
  • Chen, Y.; Xie, Q.; Sari, A.; Brady, P. V.; Saeedi, A. Oil/Water/Rock Wettability: Influencing Factors and Implications for Low Salinity Water Flooding in Carbonate Reservoirs. Fuel. 2018, 215, 171–177. DOI: 10.1016/j.fuel.2017.10.031.
  • Khilar, K. C.; Vaidya, R. N.; Fogler, H. S. Colloidally-Induced Fines Release in Porous Media. J. Pet. Sci. Eng. 1990, 4, 213–221. DOI: 10.1016/0920-4105(90)90011-Q.
  • Al-Hammadi, M.; Mahzari, P.; Sohrabi, M. Fundamental Investigation of Underlying Mechanisms behind Improved Oil Recovery by Low Salinity Water Injection in Carbonate Rocks. Fuel. 2018, 220, 345–357. DOI: 10.1016/j.fuel.2018.01.136.
  • Sohrabi, M.,M.; Mahzari, P.; Farzaneh, S. A.; Mills, J. R.; Tsolis, P.; Ireland, S. Novel Insights into Mechanisms of Oil Recovery by Low Salinity Water Injection. Presented SPE Middle East Oil & Gas Show and Conference, Bahrain, Manama, March 11, 2015. DOI: 10.2118/172778-MS.
  • Bidhendi, M. M.; Garcia-Olvera, G.; Morin, B.; Oakey, J. S.; Alvarado, V. Interfacial Viscoelasticity of Crude Oil/Brine: An Alternative Enhanced-Oil-Recovery Mechanism in Smart Waterflooding. SPE J. 2018, 23, 803–818. DOI: 10.2118/169127-PA.
  • Morin, B.; Yafei, L.; Alvarado, V.; Oakey, J. S. A Microfluidic Flow Focusing Platform to Screen the Evolution of Crude Oil–Brine Interfacial Elasticity. Lab Chip. 2016, 16, 3074–3081. DOI: 10.1039/C6LC00287K.
  • Wang, X.; Alvarado, V. Effects of Low-Salinity Waterflooding on Capillary Pressure Hysteresis. Fuel. 2017, 207, 336–343.. DOI: 10.1016/j.fuel.2017.06.095.
  • Bartels, W. B.; Mahani, H.; Berg, S.; Hassanizadeh, S. M. Literature Review of Low Salinity Waterflooding from a Length and Time Scale Perspective. Fuel. 2019, 236, 338–353. DOI: 10.1016/j.fuel.2018.09.018.
  • Morrow, N. R. Wettability and Its Effect on Oil Recovery. SPE Distinguished Author Series. J. Pet. Tech. 1990, 42, 1476–1484. DOI: 10.2118/21621-PA.
  • Greenwood, R. Review of the Measurement of Zeta Potentials in Concentrated Aqueous Suspensions Using Electroacoustics. Adv. Coll. Inter. Sci. 2003, 106, 55–81. DOI: 10.1016/S0001-8686(03)00105-2.
  • Anderson, W. G. Wettability Literature Survey-Part 1: Rock/Oil/Brine Interactions and the Effects of Core Handling on Wettability. J. Pet. Tech. 1986, 38, 1125–1144. DOI: 10.2118/13932-PA.
  • Norouzi, H. R.; Madhi, M.; Seyyedi, M.; Rezaee, M. Foam Propagation and Oil Recovery Potential at Large Distances from an Injection Well. Chem Eng Res Design. 2018, 135, 67–77. DOI: 10.1016/j.cherd.2018.05.024.
  • McMillan, M. D.; Rahnema, H.; Romiluy, J.; Kitty, F. J. Effect of Exposure Time and Crude Oil Composition on Low-Salinity Water Flooding. Fuel. 2016, 185, 263–272. DOI: 10.1016/j.fuel.2016.07.090.
  • Puntervold, T.; Strand, S.; Austad, T. New Method to Prepare Outcrop Chalk Cores for Wettability and Oil Recovery at Low Water Saturation. Energy Fuels. 2007, 21, 3425–3430. DOI: 10.1021/ef700323c.
  • Tang, G. Q.; Firoozabadi, A. Effect of Pressure Gradient and Initial Water Saturation on Water Injection in Water-Wet and Mixed-Wet Fractured Porous Media. SPE Res. Eva. Eng. 2001, 4, 516–524. DOI: 10.2118/74711-PA.
  • Zhang, Y.; Morrow, N. R. Comparison of Secondary and Tertiary Recovery with Change in Symposium on Improved Oil Recovery, USA, Oklahoma, Tulsa, April 22, 2006. DOI: 10.2118/99757-MS.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.