121
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Predicting semiclathrate hydrates dissociation pressure using a rigorous machine learning approach

, &
Pages 863-872 | Received 30 Sep 2018, Accepted 28 Apr 2019, Published online: 16 May 2019

References

  • Babaee, S.; Hashemi, H.; Mohammadi, A. H.; Naidoo, P.; Ramjugernath, D. Kinetic Study of Hydrate Formation for Argon + TBAB + SDS Aqueous Solution System. J. Chem. Thermodyn. 2018, 116, 121–129. DOI:10.1016/j.jct.2017.08.030.
  • Mesbah, M.; Soroush, E.; Rezakazemi, M. Modeling Dissociation Pressure of Semi-Clathrate Hydrate Systems Containing CO2, CH4, N2, and H2S in the Presence of Tetra-n-Butyl Ammonium Bromide. J. Non-Equilib. Thermodyn. 2018, 44, 15–28.
  • Mohammadi, A.; Pakzad, M.; Mohammadi, A.; Jahangiri, A. Kinetics of (TBAF. + CO 2) Semi-Clathrate Hydrate Formation in the Presence and Absence of SDS. Pet. Sci. 2018, 15, 375–384. DOI:10.1007/s12182-018-0221-6.
  • Sloan, E. D. Jr.; Koh, C. Clathrate Hydrates of Natural Gases; CRC Press: Boca Raton, FL; 2007.
  • Carroll, J. Natural Gas Hydrates: A Guide for Engineers; Elsevier Science, Oxford; 2009.
  • Shimada, W.; Shiro, M.; Kondo, H.; Takeya, S.; Oyama, H.; Ebinuma, T.; Narita, H. Tetra-n-Butylammonium Bromide–Water (1/38). Acta Crystallogr. C Cryst. Struct. Commun. 2005, 61, o65–o66. DOI:10.1107/S0108270104032743.
  • Mohammadi, A.; Manteghian, M.; Haghtalab, A.; Mohammadi, A. H.; Rahmati-Abkenar, M. Kinetic Study of Carbon Dioxide Hydrate Formation in Presence of Silver Nanoparticles and SDS. Chem. Eng. J. 2014, 237, 387–395. DOI:10.1016/j.cej.2013.09.026.
  • Mohammadi, A.; Manteghian, M.; Mohammadi, A. H. Phase Equilibria of Semiclathrate Hydrates for Methane + Tetra n-Butylammonium Chloride (TBAC), Carbon Dioxide + TBAC, and Nitrogen + TBAC Aqueous Solution Systems. Fluid Phase Equilibria 2014, 381, 102–107. DOI:10.1016/j.fluid.2014.08.012.
  • Arjang, S.; Manteghian, M.; Mohammadi, A. Effect of Synthesized Silver Nanoparticles in Promoting Methane Hydrate Formation at 4.7 MPa and 5.7 MPa. Chem. Eng. Res. Des. 2013, 91, 1050–1054. DOI:10.1016/j.cherd.2012.12.001.
  • Mohammadi, A.; Manteghian, M.; Mohammadi, A. H.; Jahangiri, A. Induction Time, Storage Capacity, and Rate of Methane Hydrate Formation in the Presence of SDS and Silver Nanoparticles. Chem. Eng. Commun. 2017, 204, 1420–1427. DOI:10.1080/00986445.2017.1366903.
  • Mohammadi, A. Effect of SDS, Silver Nanoparticles, and SDS + Silver Nanoparticles on Methane Hydrate Semicompletion Time. Pet. Sci. Technol. 2017, 35, 1542–1548. DOI:10.1080/10916466.2017.1316736.
  • Mohammadi, A. Semicompletion Time of Carbon Dioxide Uptake in the Process of Gas Hydrate Formation in Presence and Absence of SDS and Silver Nanoparticles. Pet. Sci. Technol. 2017, 35, 37–44. DOI:10.1080/10916466.2016.1248773.
  • Mohammadi, A. H.; Eslamimanesh, A.; Belandria, V.; Richon, D. Phase Equilibria of Semiclathrate Hydrates of CO2, N2, CH4, or H2+ Tetra-n-Butylammonium Bromide Aqueous Solution. J. Chem. Eng. Data 2011, 56, 3855–3865. DOI:10.1021/je2005159.
  • Manteghian, M.; Safavi, S. M. M.; Mohammadi, A. The Equilibrium Conditions, Hydrate Formation and Dissociation Rate and Storage Capacity of Ethylene Hydrate in Presence of 1, 4-Dioxane. Chem. Eng. J. 2013, 217, 379–384. DOI:10.1016/j.cej.2012.12.014.
  • Mayoufi, N.; Dalmazzone, D.; FüRst, W.; Delahaye, A.;.; Fournaison, L. CO2 Enclathration in Hydrates of Peralkyl-(Ammonium/Phosphonium) Salts: Stability Conditions and Dissociation Enthalpies. J. Chem. Eng. Data 2009, 55, 1271–1275. DOI:10.1021/je9006212.
  • Mohammadi, A.; Manteghian, M.; Mohammadi, A. H. Dissociation Data of Semiclathrate Hydrates for the Systems of Tetra-n-Butylammonium Fluoride (TBAF)+ Methane + Water, TBAF + Carbon Dioxide + Water, and TBAF + Nitrogen + Water. J. Chem. Eng. Data 2013, 58, 3545–3550. DOI:10.1021/je4008519.
  • Shimada, W.; Ebinuma, T.; Oyama, H.; Kamata, Y.; Takeya, S.; Uchida, T.; Nagao, J.; Narita, H. Separation of Gas Molecule Using Tetra-n-Butyl Ammonium Bromide Semi-Clathrate Hydrate Crystals. Jpn. J. Appl. Phys. 2003, 42, L129. DOI:10.1143/JJAP.42.L129.
  • Shin, K.; Kim, Y.; Strobel, T. A.; Prasad, P.; Sugahara, T.; Lee, H.; Sloan, E. D.; Sum, A. K.; Koh, C. A. Tetra-n-Butylammonium Borohydride Semiclathrate: A Hybrid Material for Hydrogen Storage. J. Phys. Chem. A 2009, 113, 6415–6418. DOI:10.1021/jp902547d.
  • Fukushima, S.; Takao, S.; Ogoshi, H.; Ida, H.; Akiyama, T.; Otsuka, T. Development of High-Density Cold Latent Heat with Clathrate Hydrate. Nkk Technical Report-Japanese EDITION 1999, 65–70.
  • Fan, S.; Li, Q.; Nie, J.; Lang, X.; Wen, Y.; Wang, Y. Semiclathrate Hydrate Phase Equilibrium for CO2/CH4 Gas Mixtures in the Presence of Tetrabutylammonium Halide (Bromide, Chloride, or Fluoride). J. Chem. Eng. Data 2013, 58, 3137–3141. DOI:10.1021/je4005933.
  • Dyadin, Y. A.; Udachin, K.; Bogatyryova, S.; Zhurko, F.; Mironov, Y. I. Cubic Structure II Double Clathrate Hydrates with Tetra (n-Propyl) Ammonium Fluoride. Journal of Inclusion Phenomena 1988, 6, 565–575. DOI:10.1007/BF00656337.
  • Makino, T.; Yamamoto, T.; Nagata, K.; Sakamoto, H.; Hashimoto, S.; Sugahara, T.; Ohgaki, K. Thermodynamic Stabilities of Tetra-n-Butyl Ammonium Chloride + H2, N2, CH4, CO2, or C2H6 Semiclathrate Hydrate Systems. J. Chem. Eng. Data 2009, 55, 839–841. DOI:10.1021/je9004883.
  • Kwaterski, M.; Herri, J.-M. Thermodynamic modelling of gas semi-clathrate hydrates using the electrolyte NRTL model. In 7th International Conference on Gas Hydrates (ICGH 2011), 2011; 437.
  • Joshi, A.; Mekala, P.; Sangwai, J. S. Modeling Phase Equilibria of Semiclathrate Hydrates of CH4, CO2 and N2 in Aqueous Solution of Tetra-n-Butyl Ammonium Bromide. J. Nat. Gas Chem. 2012, 21, 459–465. DOI:10.1016/S1003-9953(11)60391-5.
  • Liao, Z.; Guo, X.; Zhao, Y.; Wang, Y.; Sun, Q.; Liu, A.; Sun, C.; Chen, G. Experimental and Modeling Study on Phase Equilibria of Semiclathrate Hydrates of Tetra-n-Butyl Ammonium Bromide + CH4, CO2, N2, or Gas Mixtures. Ind. Eng. Chem. Res. 2013, 52, 18440–18446. DOI:10.1021/ie402903m.
  • Paricaud, P. Modeling the Dissociation Conditions of Salt Hydrates and Gas Semiclathrate Hydrates: application to Lithium Bromide, Hydrogen Iodide, and Tetra-n-Butylammonium Bromide + Carbon Dioxide Systems. J. Phys. Chem. B. 2011, 115, 288–299. DOI:10.1021/jp1067457.
  • Eslamimanesh, A.; Mohammadi, A. H.; Richon, D. Thermodynamic Modeling of Phase Equilibria of Semi-Clathrate Hydrates of CO2, CH4, or N2+ Tetra-n-Butylammonium Bromide Aqueous Solution. Chem. Eng. Sci. 2012, 81, 319–328. DOI:10.1016/j.ces.2012.07.006.
  • Arbib, M. A. The Handbook of Brain Theory and Neural Networks; The MIT Press, Cambridge, MA, 2003.
  • Blackwell, W. J.; Chen, F. W. Neural Networks in Atmospheric Remote Sensing; Artech House, Norwood, MA, 2009.
  • Dreyfus, G. Neural Networks: Methodology and APPLICATIONS; Springer: Heidelberg, 2005.
  • Hu, Y. H.; Hwang, J. N. Handbook of Neural Network Signal Processing; Taylor & Francis, 2010.
  • Soroush, E.; Mesbah, M.; Shokrollahi, A.; Rozyn, J.; Lee, M.; Kashiwao, T.; Bahadori, A. Evolving a Robust Modeling Tool for Prediction of Natural Gas Hydrate Formation Conditions. J. Unconv. Oil Gas Resour. 2015, 12, 45–55. DOI:10.1016/j.juogr.2015.09.002.
  • Rezakazemi, M.; Mohammadi, T. Gas Sorption in H2-Selective Mixed Matrix Membranes: Experimental and Neural Network Modeling. Int. J. Hydrogen Energy 2013, 38, 14035–14041. DOI:10.1016/j.ijhydene.2013.08.062.
  • Rezakazemi, M.; Razavi, S.; Mohammadi, T.; Nazari, A. G. Simulation and Determination of Optimum Conditions of Pervaporative Dehydration of ISOPROPANOL Process Using Synthesized PVA–APTEOS/TEOS Nanocomposite Membranes by Means of Expert Systems. J. Membrane Sci. 2011, 379, 224–232. DOI:10.1016/j.memsci.2011.05.070.
  • Demuth, H.; Beale, M. Neural Network Toolbox User’s Guide, MATLAB 2000.
  • Mohammadi, A. H.; Belandria, V.; Richon, D. Use of an Artificial Neural Network Algorithm to Predict Hydrate Dissociation Conditions for Hydrogen + Water and Hydrogen + Tetra-n-Butyl Ammonium Bromide + Water Systems. Chem. Eng. Sci. 2010, 65, 4302–4305. DOI:10.1016/j.ces.2010.04.026.
  • Marquardt, D. W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. DOI:10.1137/0111030.
  • Mohammadi, A. H.; Richon, D. Hydrate Phase Equilibria for Hydrogen + Water and Hydrogen + Tetrahydrofuran + Water Systems: Predictions of Dissociation Conditions Using an Artificial Neural Network Algorithm. Chem. Eng. Sci. 2010, 65, 3352–3355. DOI:10.1016/j.ces.2010.02.015.
  • Acosta, H. Y.; Bishnoi, P. R.; Clarke, M. A. Experimental Measurements of the Thermodynamic Equilibrium Conditions of Tetra-n-Butylammonium Bromide Semiclathrates Formed from Synthetic Landfill Gases. J. Chem. Eng. Data 2010, 56, 69–73. DOI:10.1021/je100805c.
  • Lee, S.; Lee, Y.; Park, S.; Seo, Y. Phase Equilibria of Semiclathrate Hydrate for Nitrogen in the Presence of Tetra-n-Butylammonium Bromide and Fluoride. J. Chem. Eng. Data 2010, 55, 5883–5886. DOI:10.1021/je100886b.
  • Li, D.-L.; Du, J.-W.; Fan, S.-S.; Liang, D.-Q.; Li, X.-S.; Huang, N.-S. Clathrate Dissociation Conditions for Methane + Tetra-n-Butyl Ammonium Bromide (TBAB)+ Water. J. Chem. Eng. Data 2007, 52, 1916–1918. DOI:10.1021/je700229e.
  • Li, S.; Fan, S.; Wang, J.; Lang, X.; Wang, Y. Semiclathrate Hydrate Phase Equilibria for CO2 in the Presence of Tetra-n-Butyl Ammonium Halide (Bromide, Chloride, or Fluoride). J. Chem. Eng. Data 2010, 55, 3212–3215. DOI:10.1021/je100059h.
  • Mohammadi, A. H.; Eslamimanesh, A.; Belandria, V.; Richon, D.; Naidoo, P.; Ramjugernath, D. Phase Equilibrium Measurements for Semi-Clathrate Hydrates of the (CO 2+ N 2+ Tetra-n-Butylammonium Bromide) Aqueous Solution System. J. Chem. Thermodyn. 2012, 46, 57–61. DOI:10.1016/j.jct.2011.10.004.
  • Mohammadi, A. H.; Eslamimanesh, A.; Richon, D. Semi-Clathrate Hydrate Phase Equilibrium Measurements for the CO 2+ H 2/CH 4+ Tetra-n-Butylammonium Bromide Aqueous Solution System. Chem. Eng. Sci. 2013, 94, 284–290. DOI:10.1016/j.ces.2013.01.063.
  • Mohammadi, A. H.; Richon, D. Phase Equilibria of Semi-Clathrate Hydrates of Tetra-n-Butylammonium Bromide + Hydrogen Sulfide and Tetra-n-Butylammonium Bromide + Methane. J. Chem. Eng. Data 2009, 55, 982–984. DOI:10.1021/je9004257.
  • Sun, Q.; Zhao, Y.; Liu, A.; Guo, X.; Zhang, J. Continuous Separation of CH 4/N 2 Mixture via Hydrates Formation in the Presence of TBAB. Chem. Eng. Process. Process Intensif. 2015, 95, 284–288. DOI:10.1016/j.cep.2015.06.012.
  • Sun, S.-C.; Liu, C.-L.; Meng, Q.-G. Hydrate Phase Equilibrium of Binary Guest-Mixtures Containing CO 2 and N 2 in Various Systems. J. Chem. Thermodyn. 2015, 84, 1–6. DOI:10.1016/j.jct.2014.12.018.
  • Rousseeuw, P. J.; Leroy, A. M. Robust Regression and Outlier Detection; Wiley: New York, 2005.
  • Mesbah, M.; Soroush, E.; Azari, V.; Lee, M.; Bahadori, A.; Habibnia, S. Vapor Liquid Equilibrium Prediction of Carbon Dioxide and Hydrocarbon Systems Using LSSVM Algorithm. J. Supercrit. Fluids 2015, 97, 256–267. DOI:10.1016/j.supflu.2014.12.011.
  • Mesbah, M.; Soroush, E.; Shokrollahi, A.; Bahadori, A. Prediction of Phase Equilibrium of CO2/Cyclic Compound Binary Mixtures Using a Rigorous Modeling Approach. J. Supercrit. Fluids 2014, 90, 110–125. DOI:10.1016/j.supflu.2014.03.009.
  • Soroush, E.; Mesbah, M.; Shokrollahi, A.; Bahadori, A.; Ghazanfari, M. H. Prediction of Methane Uptake on Different Adsorbents in Adsorbed Natural Gas Technology Using a Rigorous Model. Energy Fuels 2014, 28, 6299–6314. DOI:10.1021/ef501550p.
  • Shi, L-l.; Liang, D-q. Thermodynamic Model of Phase Equilibria of Tetrabutyl Ammonium Halide (Fluoride, Chloride, or Bromide) plus Methane or Carbon Dioxide Semiclathrate Hydrates. Fluid Phase Equilibria 2015, 386, 149–154. DOI:10.1016/j.fluid.2014.12.004.
  • Lin, W.; Delahaye, A.; Fournaison, L. Phase Equilibrium and Dissociation Enthalpy for Semi-Clathrate Hydrate of CO 2+ TBAB. Fluid Phase Equilibria 2008, 264, 220–227. DOI:10.1016/j.fluid.2007.11.020.
  • Sun, Z.-G.; Sun, L. Equilibrium Conditions of Semi-Clathrate Hydrate Dissociation for Methane + Tetra-n-Butyl Ammonium Bromide. J. Chem. Eng. Data 2010, 55, 3538–3541. DOI:10.1021/je100183s.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.