218
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Kinetics of CO2 hydrate formation in coffee aqueous solution: Application in coffee concentration

, , , , &
Pages 895-901 | Received 16 Nov 2018, Accepted 28 Apr 2019, Published online: 29 May 2019

References

  • Sloan, E. D. Fundamental Principles and Applications of Natural Gas Hydrates. Nature 2003, 426, 353. DOI:10.1038/nature02135.
  • Eslamimanesh, A.; Mohammadi, A. H.; Richon, D.; Naidoo, P.; Ramjugernath, D. Application of Gas Hydrate Formation in Separation Processes: A Review of Experimental Studies. J. Chem. Thermodyn. 2012, 46, 62–71. DOI:10.1016/j.jct.2011.10.006.
  • Javanmardi, J.; Nasrifar, K.; Najibi, S. H.; Moshfeghian, M. Economic Evaluation of Natural Gas Hydrate as an Alternative for Natural Gas Transportation. Appl. Thermal Eng. 2005, 25, 1708–1723. DOI:10.1016/j.applthermaleng.2004.10.009.
  • Khawaji, A. D.; Kutubkhanah, I. K.; Wie, J.-M. Advances in Seawater Desalination Technologies. Desalination 2008, 221, 47–69. DOI:10.1016/j.desal.2007.01.067.
  • Li, X.-S.; Zhan, H.; Xu, C.-G.; Zeng, Z.-Y.; Lv, Q.-N.; Yan, K.-F. Effects of Tetrabutyl-(Ammonium/Phosphonium) Salts on Clathrate Hydrate Capture of CO2 from Simulated Flue Gas. Energy Fuels 2012, 26, 2518–2527. DOI:10.1021/ef3000399.
  • Najibi, H.; Rezaei, R.; Javanmardi, J.; Nasrifar, K.; Moshfeghian, M. Economic Evaluation of Natural Gas Transportation from Iran’s South-Pars Gas Field to Market. Appl. Thermal Eng. 2009, 29, 2009. DOI:10.1016/j.applthermaleng.2008.10.008.
  • Nakayama, T.; Tomura, S.; Ozaki, M.; Ohmura, R.; Mori, Y. H. Engineering Investigation of Hydrogen Storage in the Form of Clathrate Hydrates: conceptual Design of Hydrate Production Plants. Energy Fuels 2010, 24, 2576–2588. DOI:10.1021/ef100039a.
  • Ngema, P. T.; Petticrew, C.; Naidoo, P.; Mohammadi, A. H.; Ramjugernath, D. Experimental Measurements and Thermodynamic Modeling of the Dissociation Conditions of Clathrate Hydrates for (Refrigerant + NaCl + Water) Systems. J. Chem. Eng. Data 2014, 59, 466–475. DOI:10.1021/je400919u.
  • Pang, W. X.; Chen, G. J.; Dandekar, A.; Sun, C. Y.; Zhang, C. L. Experimental Study on the Scale-up Effect of Gas Storage in the Form of Hydrate in a Quiescent Reactor. Chem. Eng. Sci. 2007, 62, 2198–2208. DOI:10.1016/j.ces.2007.01.001.
  • Tumba, K.; Naidoo, P.; Mohammadi, A. H.; Richon, D.; Ramjugernath, D. Phase Equilibria of Clathrate Hydrates of Ethane + Ethene. J. Chem. Eng. Data 2013, 58, 896–901. DOI:10.1021/je301051c.
  • Deqing, L.; Shuanshi, F.; Kaihua, G.; Yongli, Z.; Ruzhu, W. Phase Equilibrium and Formation Morphology of Refrigerant Gas Hydrates. Domestic Organizing Committee Japan; Q3-Q3.
  • Herslund, P. J.; Thomsen, K.; Abildskov, J.; von Solms, N. Phase Equilibrium Modeling of Gas Hydrate Systems for CO2 Capture. J. Chem. Thermodyn. 2012, 48, 13–27. DOI:10.1016/j.jct.2011.12.039.
  • Kang, S.-P.; Lee, H. Recovery of CO2 from Flue Gas Using Gas Hydrate: thermodynamic Verification through Phase Equilibrium Measurements. Environ. Sci. Technol. 2000, 34, 4397–4400. DOI:10.1021/es001148l.
  • Linga, P.; Kumar, R.; Lee, J. D.; Ripmeester, J.; Englezos, P. A New Apparatus to Enhance the Rate of Gas Hydrate Formation: Application to Capture of Carbon Dioxide. Int. J. Greenhouse Gas Control 2010, 4, 630–637. DOI:10.1016/j.ijggc.2009.12.014.
  • Martinez, M. C.; Dalmazzone, D.; Fürst, W.; Delahaye, A.; Fournaison, L. Thermodynamic Properties of THF + CO2 Hydrates in Relation with Refrigeration Applications. AIChE J. 2008, 54, 1088–1095. DOI:10.1002/aic.11455.
  • Abedi-Farizhendi, S.; Rahmati-Abkenar, M.; Manteghian, M.; Yekshaveh, J. S.; Zahmatkeshan, V. Kinetic Study of Propane Hydrate in the Presence of Carbon Nanostructures and SDS. J. Pet. Sci. Eng. 2018, 172, 636–642.
  • Beauchamp, Bt. Natural Gas Hydrates: myths, Facts and Issues. C. R. Geosci. 2004, 336, 751–765. DOI:10.1016/j.crte.2004.04.003.
  • Hashemi, H.; Babaee, S.; Mohammadi, A. H.; Naidoo, P.; Ramjugernath, D. Experimental Study and Modeling of the Kinetics of Refrigerant Hydrate Formation. J. Chem. Thermodyn. 2015, 82, 47–52. DOI:10.1016/j.jct.2014.10.017.
  • Hashemi, H.; Babaee, S.; Mohammadi, A. H.; Naidoo, P.; Ramjugernath, D. Experimental Measurements and Thermodynamic Modeling of Refrigerant Hydrates Dissociation Conditions. J. Chem. Thermodyn. 2015, 80, 30–40. DOI:10.1016/j.jct.2014.08.007.
  • Mohammadi, A.; Manteghian, M.; Mohammadi, A. H.; Jahangiri, A. Induction Time, Storage Capacity, and Rate of Methane Hydrate Formation in the Presence of SDS and Silver Nanoparticles. Chem. Eng. Commun. 2017, 204, 1420–1427. DOI:10.1080/00986445.2017.1366903.
  • Mohammadi, A.; Pakzad, M.; Mohammadi, A. H.; Jahangiri, A. Kinetics of (TBAF + CO2) Semi-Clathrate Hydrate Formation in the Presence and Absence of SDS. Pet. Sci. 2018, 15, 375–384. DOI:10.1007/s12182-018-0221-6.
  • Ghiasi, M. M.; Abedi‐Farizhendi, S.; Mohammadi, A. H. Modeling Equilibrium Systems of Amine‐Based CO2 Capture by Implementing Machine Learning Approaches. Environ. Progress Sustain. Energy 2019, In press, DOI:10.1002/ep.13160.
  • Arjang, S.; Manteghian, M.; Mohammadi, A. Effect of Synthesized Silver Nanoparticles in Promoting Methane Hydrate Formation at 4.7 MPa and 5.7 MPa. Chem. Eng. Res. Des. 2013, 91, 1050–1054. DOI:10.1016/j.cherd.2012.12.001.
  • Mohammadi, A.; Manteghian, M. The Induction Time of Hydrate Formation from a Carbon Dioxide-Methane Gas Mixture. Pet. Sci. Technol. 2014, 32, 3029–3035. DOI:10.1080/10916466.2011.615367.
  • Goñi, O.; Fernandez-Caballero, C.; Sanchez-Ballesta, M. T.; Escribano, M. I.; Merodio, C. Water Status and Quality Improvement in high-CO2 Treated Table Grapes. Food Chem. 2011, 128, 34–39. DOI:10.1016/j.foodchem.2011.02.073.
  • Li, S.; Qi, F.; Du, K.; Shen, Y.; Liu, D.; Fan, L. An Energy-Efficient Juice Concentration Technology by Ethylene Hydrate Formation. Sep. Purif. Technol. 2017, 173, 80–85. DOI:10.1016/j.seppur.2016.09.021.
  • Li, S.; Shen, Y.; Liu, D.; Fan, L.; Tan, Z. Concentrating Orange Juice through CO2 Clathrate Hydrate Technology. Chem. Eng. Res. Des. 2015, 93, 773–778. DOI:10.1016/j.cherd.2014.07.020.
  • Li, S.; Shen, Y.; Liu, D.; Fan, L.; Tan, Z.; Zhang, Z.; Li, W.; Li, W. Experimental Study of Concentration of Tomato Juice by CO2 Hydrate Formation. CI&Ceq. 2015, 21, 441–446. DOI:10.2298/CICEQ140730046L.
  • Li, S.-F.; Shen, Y.-M.; Liu, D.-B.; Fan, L.-H.; Zhang, Z.-G.; Li, W.-X. A Novel Orange Juice Concentration Method Based on C_2H_4 Clathrate Hydrate Formation. AJFST. 2014, 6, 780–783. DOI:10.19026/ajfst.6.110.
  • Purwanto, Y. A.; Oshita, S.; Seo, Y.; Kawagoe, Y. Separation Process of Nonpolar Gas Hydrate in Food Solution under High Pressure Apparatus. Int. J. Chem. Eng. 2014, 2014, 1. DOI:10.1155/2014/262968.
  • Huang, C. P.; Fennema, O.; Powrie, W. D. Gas Hydrates in Aqueous-Organic Systems: II. Concentration by Gas Hydrate Formation. Cryobiology 1966, 2, 240–245. DOI:10.1016/S0011-2240(66)80129-3.
  • Ngan, Y. T.; Englezos, P. Concentration of Mechanical Pulp Mill Effluents and NaCl Solutions through Propane Hydrate Formation. Ind. Eng. Chem. Res. 1996, 35, 1894–1900. DOI:10.1021/ie960001t.
  • Andersen, T. B.; Thomsen, K. Separation of Water through Gas Hydrate Formation. Int. Sugar J. 2009, 111, 632–636.
  • Smith, A.; Babaee, S.; Mohammadi, A. H.; Naidoo, P.; Ramjugernath, D. Clathrate Hydrate Dissociation Conditions for Refrigerant + Sucrose Aqueous Solution: Experimental Measurement and Thermodynamic Modelling. Fluid Phase Equilibria 2016, 413, 99–109. DOI:10.1016/j.fluid.2015.11.022.
  • Purwanto, Y. A.; Oshita, S.; Seo, Y.; Kawagoe, Y. Concentration of Liquid Foods by the Use of Gas Hydrate. J. Food Eng. 2001, 47, 133–138. DOI:10.1016/S0260-8774(00)00109-6.
  • Englezos, P.; Kalogerakis, N.; Dholabhai, P. D.; Bishnoi, P. R. Kinetics of Formation of Methane and Ethane Gas Hydrates. Chem. Eng. Sci. 1987, 42, 2647–2658. DOI:10.1016/0009-2509(87)87015-X.
  • Peng, D.-Y.; Robinson, D. B. A New Two-Constant Equation of State. Ind. Eng. Chem. Fund. 1976, 15, 59–64. DOI:10.1021/i160057a011.
  • Manteghian, M.; Safavi, S. M. M.; Mohammadi, A. The Equilibrium Conditions, Hydrate Formation and Dissociation Rate and Storage Capacity of Ethylene Hydrate in Presence of 1,4-Dioxane. Chem. Eng. J. 2013, 217, 379–384. DOI:10.1016/j.cej.2012.12.014.
  • Klauda, J. B.; Sandler, S. I. A Fugacity Model for Gas Hydrate Phase Equilibria. Ind. Eng. Chem. Res. 2000, 39, 3377–3386. DOI:10.1021/ie000322b.
  • Mohammadi, A.; Manteghian, M.; Haghtalab, A.; Mohammadi, A. H.; Rahmati-Abkenar, M. Kinetic Study of Carbon Dioxide Hydrate Formation in Presence of Silver Nanoparticles and SDS. Chem. Eng. J. 2014, 237, 387–395. DOI:10.1016/j.cej.2013.09.026.
  • Najibi, H.; Shayegan, M. M.; Heidary, H. Experimental Investigation of Methane Hydrate Formation in the Presence of Copper Oxide Nanoparticles and SDS. J. Nat. Gas Sci. Eng. 2015, 23, 315–323. DOI:10.1016/j.jngse.2015.02.009.
  • Van der Waals, J. H.; Platteeuw, J. C. Clathrate Solutions. Adv. Chem. Phys. 2007, 2, 1–57.
  • Christiansen, R. L.; Sloan, E. D. Jr, A Compact Model for Hydrate Formation. Gas Processors Association, Tulsa, OK, 1995.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.