121
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Heterocyclic Schiff bases as corrosion inhibitors for carbon steel in 1 M HCl solution: hydrodynamic and synergetic effect

, , , &
Pages 1002-1021 | Received 01 Jan 2019, Accepted 28 Apr 2019, Published online: 28 May 2019

References

  • Olasunkanmi, L.-O.; Kabanda, M.-M.; Ebenso, E.-E. Quinoxaline Derivatives as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Medium: Electrochemical and Quantum Chemical Studies. Physica E 2016, 76, 109–126. DOI:10.1016/j.physe.2015.10.005.
  • Singh, A.-K.; Quraishi, M.-A. Study of Some Bidentate Schiff Bases of Isatin as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solution. Int. J. Electrochem. Sci. 2012, 7, 3222–3241.
  • El-Lateef, H.-M.-A.; Abu-Dief, A.-M.; Mohamed, M.-A.-A. Corrosion Inhibition of Carbon Steel Pipelines by Some Novel Schiff Base during Acidizing Treatment of Oil Wells Studied by Electrochemical and Quantum Chemical Methods. J. Mol. Struct. 2017, 1130, 522–542. DOI:10.1016/j.molstruc.2016.10.078.
  • Singh, A.-K.; Quraishi, M.-A. Effect of Cefazolin on the Corrosion of Mild Steel in HCl Solution. Corros. Sci. 2010, 52, 152–160. DOI:10.1016/j.corsci.2009.08.050.
  • Gece, G. The Use of Quantum Chemical Methods in Corrosion Inhibitor Studies. Corros. Sci. 2008, 50, 2981–2992. DOI:10.1016/j.corsci.2008.08.043.
  • Al-Noaimi, M.; Abdel-Rahman, O.-S.; Fasfous, I.-I.; El-Khateeb, M.; Awwadi, F.-F.; Warad, I. Ruthenium (II) Bipyridine Complexes Bearing Quinoline–Azoimine (NN’N’’) Tridentate Ligands: Synthesis, Spectral Characterization, Electrochemical Properties and Single-Crystal X-Ray Structure Analysis. Spectrochim. Acta. Part. A 2014, 125, 375–383. DOI:10.1016/j.saa.2014.01.075.
  • Sasikumar, Y.; Adekunle, A.-S.; Olasunkanmi, L.-O.; Bahadur, I.; Baskar, R.; Kabanda, M.-M.; Obot, I.-B.; Ebenso, E.-E. Experimental, Quantum Chemical and Monte Carlo Simulation Studies on the Corrosion Inhibition of Some Alkyl Imidazolium Ionic Liquids Containing Tetrafluoroborate Anion on Mild Steel in Acidic Medium. J. Mol. Liq. 2015, 211, 105–118. DOI:10.1016/j.molliq.2015.06.052.
  • Jayaperumal, D. Effects of Alcohol-Based Inhibitors on Corrosion of Mild Steel in Hydrochloric Acid. Mater. Chem. Phys. 2010, 119, 478–484. DOI:10.1016/j.matchemphys.2009.09.028.
  • Shihab, M.-S.; Al-Doori, H.-H. Experimental and Theoretical Study of [N-Substituted] p-Aminoazobenzene Derivatives as Corrosion Inhibitors for Mild Steel in Sulfuric Acid Solution. J. Mol. Struct. 2014, 1076, 658–663. DOI:10.1016/j.molstruc.2014.08.038.
  • Benabid, S.; Douadi, T.; Issaadi, S.; Penverne, C.; Chafaa, S. Electrochemical and DFT Studies of a New Synthesized Schiff Base as Corrosion Inhibitor in 1M HCl. Measurement 2017, 99, 53–63. DOI:10.1016/j.measurement.2016.12.022.
  • Khaled, K.-F.; Amin, M.-A. Corrosion Monitoring of Mild Steel in Sulphuric Acid Solutions in Presence of Some Thiazole Derivatives – Molecular Dynamics, Chemical and Electrochemical Studies. Corros. Sci. 2009, 51, 1964–1975. DOI:10.1016/j.corsci.2009.05.023.
  • Ashassi-Sorkhabi, H.; Ghalebsaz-Jeddi, N.; Hashemzadeh, F.; Jahani, H. Corrosion Inhibition of Carbon Steel in Hydrochloric Acid by Some Polyethylene Glycols. Electrochim. Acta 2006, 51, 3848–3854. DOI:10.1016/j.electacta.2005.11.002.
  • Hamani, H.; Douadi, T.; Al-Noaimi, M.; Issaadi, S.; Daoud, D.; Chafaa, S. Electrochemical and Quantum Chemical Studies of Some Azomethine Compounds as Corrosion Inhibitors for Mild Steel in 1 M Hydrochloric Acid. Corros. Sci. 2014, 88, 234–245. DOI:10.1016/j.corsci.2014.07.044.
  • Barros, I. B. d.; Kappel, M. A. A.; Santos, P. M. d.; Veiga Junior, V. F. d.; D'Elia, E.; Bastos, I. N. The Inhibitory Action of Bauhinia Purpurea Extracts on the Corrosion of Carbon Steel in Sulfuric Acid Medium. Mater. Res. 2016, 19, 187–194. DOI:10.1590/1980-5373-MR-2015-0494.
  • Hegazy, M.-A.; Abdallah, M.; Awad, M.-K.; Rezk, M. Three Novel di-Quaternary Ammonium Salts as Corrosion Inhibitors for API X65 Steel Pipeline in Acidic Solution. Part I: Experimental Results. Corros. Sci. 2014, 81, 54–64. DOI:10.1016/j.corsci.2013.12.010.
  • Habeeb, H.-J.; Luaibi, H.-M.; Dakhil, R.-M.; Kadhum, A.-A.-H.; Al-Amiery, A.-A.; Gaaz, T.-S. Development of New Corrosion Inhibitor Tested on Mild Steel Supported by Electrochemical Study. Results Phys. 2018, 8, 1260–1267. DOI:10.1016/j.rinp.2018.02.015.
  • Singh, A.; Lin, Y.; Quraishi, M.; Olasunkanmi, L.; Fayemi, O.; Sasikumar, Y.; Ramaganthan, B.; Bahadur, I.; Obot, I.; Adekunle, A.; et al. Porphyrins as Corrosion Inhibitors for N80 Steel in 3.5% NaCl Solution: Electrochemical, Quantum Chemical, QSAR and Monte Carlo Simulations Studies. Molecules 2015, 20, 15122–15146. DOI:10.3390/molecules200815122.
  • Deng, S.; Li, X. Inhibition by Ginkgo Leaves Extract of the Corrosion of Steel in HCl and H2SO4 Solutions. Corros. Sci. 2012, 55, 407–415. DOI:10.1016/j.corsci.2011.11.005.
  • Daoud, D.; Douadi, T.; Hamani, H.; Chafaa, S.; Al-Noaimi, M. Corrosion Inhibition of Mild Steel by Two New S-Heterocyclic Compounds in 1 M HCl: Experimental and Computational Study. Corros. Sci. 2015, 94, 21–37. DOI:10.1016/j.corsci.2015.01.025.
  • Döner, A.; Solmaz, R.; Özcan, M.; Kardaş, G. Experimental and Theoretical Studies of Thiazoles as Corrosion Inhibitors for Mild Steel in Sulphuric Acid Solution. Corros. Sci 2011, 53, 2902–2913. DOI:10.1016/j.corsci.2011.05.027.
  • Kumari, P.-P.; Shetty, P.; Rao, S.-A. Electrochemical Measurements for the Corrosion Inhibition of Mild Steel in 1 M Hydrochloric Acid by Using an Aromatic Hydrazide Derivative. Arab. J. Chem. 2017, 5, 653–663. DOI:10.1016/j.arabjc.2014.09.005.
  • Yurt, A.; Balaban, A.; Kandemir, S.-U.; Bereket, G.; Erk, B. Investigation on Some Schiff Bases as HCl Corrosion Inhibitors for Carbon Steel. Mater. Chem. Phys. 2004, 85, 420–426. DOI:10.1016/j.matchemphys.2004.01.033.
  • Behpour, M.; Ghoreishi, S.-M.; Soltani, N.; Salavati-Niasari, M.; Hamadanian, M.; Gandomi, A. Electrochemical and Theoretical Investigation on the Corrosion Inhibition of Mild Steel by Thiosalicylaldehyde Derivatives in Hydrochloric Acid Solution. Corros. Sci. 2008, 50, 2172–2181. DOI:10.1016/j.corsci.2008.06.020.
  • Al-Amiery, A. A.; Ahmed, M. H. O.; Abdullah, T. A.; Gaaz, T. S.; Kadhum, A. A. H. Electrochemical Studies of Novel Corrosion Inhibitor for Mild Steel in 1M Hydrochloric Acid. Results Phys. 2018, 9, 978–981. DOI:10.1016/j.rinp.2018.04.004.
  • Singh, P.; Vandana, S.; Quraishi, M.-A. Novel Quinoline Derivatives as Green Corrosion Inhibitors for Mild Steel in Acidic Medium: Electrochemical, SEM, AFM, and XPS Studies. J. Mol. Liq. 2016, 216, 164–173. DOI:10.1016/j.molliq.2015.12.086.
  • Ebenso, E.-E.; Kabanda, M.-M.; Arslan, T.; Saracoglu, M.; Kandemirli, F.; Murulana, L.-C.; Singh, A.-K.; Shukla, S.-K.; Hammouti, B.; Khaled, K.-F.; et al. Quantum Chemical Investigations on Quinoline Derivatives as Effective Corrosion Inhibitors for Mild Steel in Acidic Medium. Int. J. Electrochem. Sci. 2012, 7, 5643–5676.
  • Saliyan, V.-R.; Adhikari, A.-V. Quinolin-5-Ylmethylene-3-{[8-(Trifluoromethyl) Quinolin-4-yl]Thio}Propanohydrazide as an Effective Inhibitor of Mild Steel Corrosion in HCl Solution. Corros. Sci. 2008, 50, 55–61. DOI:10.1016/j.corsci.2006.06.035.
  • Issaadi, S.; Douadi, T.; Zouaoui, A.; Chafaa, S.; Khan, M.-A.; Bouet, G. Novel Thiophene Symmetrical Schiff Base Compounds as Corrosion Inhibitor for Mild Steel in Acidic Media. Corros. Sci. 2011, 53, 1484–1488. DOI:10.1016/j.corsci.2011.01.022.
  • Ammar, I.-A.; El Khorafi, F.-M. Adsorbability of Thiourea on Iron Cathodes. Mater. Corros. 1973, 24, 702–707. DOI:10.1002/maco.19730240806.
  • Lebrini, M.; Lagrenée, M.; Vezin, H.; Gengembre, L.; Bentiss, F. Electrochemical and Quantum Chemical Studies of New Thiadiazole Derivatives Adsorption on Mild Steel in Normal Hydrochloric Acid Medium. Corros. Sci. 2005, 47, 485–505. DOI:10.1016/j.corsci.2004.06.001.
  • Li, L.; Qu, Q.; Bai, W.; Yang, F.; Chen, Y.; Zhang, S.; Ding, Z. Sodium Diethyldithiocarbamate as a Corrosion Inhibitor of Cold Rolled Steel in 0.5 M Hydrochloric Acid Solution. Corros. Sci. 2012, 59, 249–257. DOI:10.1016/j.corsci.2012.03.008.
  • Benali, O.; Larabi, L.; Harek, Y. Adsorption and Inhibitive Corrosion Properties of Thiourea Derivatives on Cold Rolled Steel in 1 M HClO4 Solutions. J. Appl. Electrochem. 2009, 39, 769–778. DOI:10.1007/s10800-008-9717-x.
  • Lebrini, M.; Bentiss, F.; Vezin, H.; Lagrenée, M. The Inhibition of Mild Steel Corrosion in Acidic Solutions by 2,5-Bis (4-Pyridyl)-1, 3,4-Thiadiazole: Structure–Activity Correlation. Corros. Sci. 2006, 48, 1279–1291. DOI:10.1016/j.corsci.2005.05.001.
  • Abdallah, M. Ethoxylated Fatty Alcohols as Corrosion Inhibitors for Dissolution of Zinc in Hydrochloric Acid. Corros. Sci. 2003, 45, 2705–2716. DOI:10.1016/S0010-938X(03)00107-0.
  • Soliman, S.-A.; Metwally, M.-S.; Selim, S.-R.; Bedair, M.-A.; Abbas, M.-A. Corrosion Inhibition and Adsorption Behavior of New Schiff Base Surfactant on Steel in Acidic Environment: Experimental and Theoretical Studies. J. Ind. Eng. Chem. 2014, 20, 4311–4320. DOI:10.1016/j.jiec.2014.01.038.
  • Bouklah, M.; Hammouti, B.; Lagrenée, M.; Bentiss, F. Thermodynamic Properties of 2,5-Bis(4-Methoxyphenyl)-1,3,4-Oxadiazole as a Corrosion Inhibitor for Mild Steel in Normal Sulfuric Acid Medium. Corros. Sci. 2006, 48, 2831–2842. DOI:10.1016/j.corsci.2005.08.019.
  • Azeez, F.-A.; Al-Rashed, O.-A.; Nazeer, A.-A. Controlling of Mild-Steel Corrosion in Acidic Solution Using Environmentally Friendly Ionic Liquid Inhibitors: Effect of Alkyl Chain. J. Mol. Liq. 2018, 265, 654–663. DOI:10.1016/j.molliq.2018.05.093.
  • Ahamad, I.; Prasad, R.; Quraishi, M.-A. Experimental and Theoretical Investigations of Adsorption of Fexofenadine at Mild Steel/Hydrochloric Acid Interface as Corrosion Inhibitor. J. Solid State Electrochem. 2010, 14, 2095–2105. DOI:10.1007/s10008-010-1041-9.
  • Heydari, H.; Talebian, M.; Salarvand, Z.; Raeissi, K.; Bagheri, M.; Golozar, M.-A. Comparison of Two Schiff Bases Containing O-Methyl and Nitro Substitutes for Corrosion Inhibiting of Mild Steel in 1 M HCl Solution. J. Mol. Liq. 2018, 254, 177–187. DOI:10.1016/j.molliq.2018.01.112.
  • Ashassi-Sorkhabi, H.; Shaabani, B.; Seifzadeh, D. Corrosion Inhibition of Mild Steel by Some Schiff Base Compounds in Hydrochloric Acid. Appl. Surf. Sci. 2005, 239, 154–164. DOI:10.1016/j.apsusc.2004.05.143.
  • Gowraraju, N.-D.; Jagadeesan, S.; Ayyasamy, K.; Olasunkanmi, L.-O.; Ebenso, E.-E.; Chitra, S. Adsorption Characteristics of Iota-Carrageenan and Inulin Biopolymers as Potential Corrosion Inhibitors at Mild Steel/Sulphuric Acid Interface. J. Mol. Liq. 2017, 232, 9–19. DOI:10.1016/j.molliq.2017.02.054.
  • Domga, R.; Harouna, M.; Tcheka, C.; Tchatchueng, J.-B.; Tsafam, A.; Domga, Dama, N.-K.; Dikdim, D. Batch Equilibrium, Kinetic and Thermodynamic Studies on Adsorption of Methylene Blue in Aqueous Solution onto Activated Carbon Prepared from Bos Indicus Gudali Bones. Chem. J. 2015, 1, 172–181.
  • Han, P.; Chen, C.; Li, W.; Yu, H.; Xu, Y.; Ma, L.; Zheng, Y. Synergistic Effect of Mixing Cationic and Nonionic Surfactants on Corrosion Inhibition of Mild Steel in HCl: Experimental and Theoretical Investigations. J. Colloid. Interface Sci. 2018, 516, 398–406. DOI:10.1016/j.jcis.2018.01.088.
  • Azghandi, M.-V.; Davoodi, A.; Farzi, G.-A.; Kosari, A. Water-Base Acrylic Terpolymer as a Corrosion Inhibitor for SAE1018 in Simulated Sour Petroleum Solution in Stagnant and Hydrodynamic Conditions. Corros. Sci. 2012, 64, 44–54. DOI:10.1016/j.corsci.2012.07.003.
  • Ashassi-Sorkhabi, H.; Asghari, E. Influence of Flow on the Corrosion Inhibition of St52-3 Type Steel by Potassium Hydrogen-Phosphate. Corros. Sci. 2009, 51, 1828–1835. DOI:10.1016/j.corsci.2009.05.010.
  • Ashassi-Sorkhabi, H.; Asghari, E. Effect of Hydrodynamic Conditions on the Inhibition Performance of l-Methionine as a “Green” Inhibitor. Electrochim. Acta 2008, 54, 162–167. DOI:10.1016/j.electacta.2008.08.024.
  • Douadi, T.; Hamani, H.; Daoud, D.; Al-Noaimi, M.; Chafaa, S. Effect of Temperature and Hydrodynamic Conditions on Corrosion Inhibition of an Azomethine Compounds for Mild Steel in 1 M HCl Solution. J. Taiwan Inst. Chem. Eng. 2017, 71, 388–404. DOI:10.1016/j.jtice.2016.11.026.
  • Kosari, A.; Moayed, M.-H.; Davoodi, A.; Parvizi, R.; Momeni, M.; Eshghi, H.; Moradi, H. Electrochemical and Quantum Chemical Assessment of Two Organic Compounds from Pyridine Derivatives as Corrosion Inhibitors for Mild Steel in HCl Solution under Stagnant Condition and Hydrodynamic Flow. Corros. Sci. 2014, 78, 138–150. DOI:10.1016/j.corsci.2013.09.009.
  • Ramya, K.; Mohan, R.; Anupama, K.-K.; Joseph, A. Electrochemical and Theoretical Studies on the Synergistic Interaction and Corrosion Inhibition of Alkyl Benzimidazoles and Thiosemicarbazide Pair on Mild Steel in Hydrochloric Acid. Mater. Chem. Phys. 2015, 149-150, 632–647. DOI:10.1016/j.matchemphys.2014.11.020.
  • Farag, A.-A.; Hegazy, M.-A. Synergistic Inhibition Effect of Potassium Iodide and Novel Schiff Bases on X65 Steel Corrosion in 0.5 M H2SO4. Corros. Sci. 2013, 74, 168–177. DOI:10.1016/j.corsci.2013.04.039.
  • Gao, H.; Li, Q.; Dai, Y.; Luo, F.; Zhang, H.-X. The Synergistic Inhibition Effect of Organic Silicate and Inorganic Zn Salt on Corrosion of Mg-10Gd-3Y Magnesium Alloy. Corros. Sci. 2011, 53, 4093–4101.
  • Pandey, A.; Verma, C.; Singh, B.; Ebenso, E.-E. Synthesis, Characterization and Corrosion Inhibition Properties of Benzamide–2- Chloro-4-Nitrobenzoic Acid and Anthranilic Acid–2-Chloro-4-Nitrobenzoic Acid for Mild Steel Corrosion in Acidic Medium. J. Mol. Struct. 2018, 1155, 110–122. DOI:10.1016/j.molstruc.2017.10.114.
  • Olasunkanmi, L.-O.; Sebona, M.-F.; Ebenso, E.-E. Influence of 6-Phenyl-3(2H)-Pyridazinone and 3-Chloro-6 Phenylpyrazine on Mild Steel Corrosion in 0.5 M HCl Medium: Experimental and Theoretical Studies. J. Mol. Struct. 2017, 1149, 549–559. DOI:10.1016/j.molstruc.2017.08.018.
  • Mahdavian, M.; Tehrani-Bagha, A.-R.; Alibakhshi, E.; Ashhari, S.; Palimi, M.-J.; Farashi, S.; Javadian, S.; Ektefa, F. Corrosion of Mild Steel in Hydrochloric Acid Solution in the Presence of Two Cationic Gemini Surfactants with and without Hydroxyl Substituted Spacers. Corros. Sci. 2018, 137, 62–75. DOI:10.1016/j.corsci.2018.03.034.
  • Chafai, N.; Chafaa, S.; Benbouguerra, K.; Daoud, D.; Hellal, A.; Mehri, M. Synthesis, Characterization and the Inhibition Activity of a New α-Aminophosphonic Derivative on the Corrosion of XC48 Carbon Steel in 0.5 M H 2 so 4: Experimental and Theoretical Studies. J. Taiwan Inst. Chem. Eng. 2017, 70, 331–344. DOI:10.1016/j.jtice.2016.10.026.
  • Musa, A.-Y.; Kadhum, A.-A.-H.; Mohamad, A.-B.; Rahoma, A.-A.-B.; Mesmari, H. Electrochemical and Quantum Chemical Calculations on 4,4-Dimethyloxazolidine-2-Thione as Inhibitor for Mild Steel Corrosion in Hydrochloric Acid. J. Mol. Struct. 2010, 969, 233–237. DOI:10.1016/j.molstruc.2010.02.051.
  • Daoud, D.; Douadi, T.; Issaadi, S.; Chafaa, S. Adsorption and Corrosion Inhibition of New Synthesized Thiophene Schiff Base on Mild Steel X52 in HCl and H2SO4 Solutions. Corros. Sci. 2014, 79, 50–58. DOI:10.1016/j.corsci.2013.10.025.
  • Hamani, H.; Douadi, T.; Daoud, D.; Al-Noaimi, M.; Rikkouh, R.-A.; Chafaa, S. 1. (4-Nitrophenylo-Imino)-1-(Phenylhydrazono)-Propan-2-One as Corrosion Inhibitor for Mild Steel in 1M HCl Solution:Weight Loss, Electrochemical, Thermodynamic and Quantum Chemical Studies. J. Electroanal. Chem. 2017, 801, 425–438. DOI:10.1016/j.jelechem.2017.08.031.
  • Saha, S.-K.; Ghosh, P.; Hens, A.; Murmu, N.-C.; Banerjee, P. Density Functional Theory and Molecular Dynamics Simulation Study on Corrosion Inhibition Performance of Mild Steel by Mercapto-Quinoline Schiff Base Corrosion Inhibitor. Physica E 2015, 66, 332–341. DOI:10.1016/j.physe.2014.10.035.
  • Saha, S.-K.; Murmu, M.; Murmu, N.-C.; Obot, I.-B.; Banerjee, P. Molecular Level Insights for the Corrosion Inhibition Effectiveness of Three Amine Derivatives on the Carbon Steel Surface in the Adverse Medium: A Combined Density Functional Theory and Molecular Dynamics Simulation Study. Surf. Interface 2018, 10, 65–73. DOI:10.1016/j.surfin.2017.11.007.
  • Bedair, M.-A.; El-Sabbah, M.-M.-B.; Fouda, A.-S.; Elaryian, H.-M. Synthesis, Electrochemical and Quantum Chemical Studies of Some Prepared Surfactants Based on Azodye and Schiff Base as Corrosion Inhibitors for Steel in Acid Medium. Corros. Sci. 2017, 128, 54–72. DOI:10.1016/j.corsci.2017.09.016.
  • El-Hajjaji, F.; Messali, M.; Aljuhani, A.; Aouad, M.-R.; Hammouti, B.; Belghiti, M.-E.; Chauhan, D.-S.; Quraishi, M.-A. Pyridazinium-Based Ionic Liquids as Novel and Green Corrosion Inhibitors of Carbon Steel in Acid Medium: Electrochemical and Molecular Dynamics Simulation Studies. J. Mol. Liq. 2018, 249, 997–1008. DOI:10.1016/j.molliq.2017.11.111.
  • Musa, A.-Y.; Jalgham, R.-T.-T.; Mohamad, A.-B. Molecular Dynamic and Quantum Chemical Calculations for Phthalazine Derivatives as Corrosion Inhibitors of Mild Steel in 1 M HCl. Corros. Sci. 2012, 56, 176–183. DOI:10.1016/j.corsci.2011.12.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.