195
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Fabrication of novel hierarchical CeO2 sub-micro spheres via a facile hydrothermal process

, , , , , & show all
Pages 1417-1426 | Received 05 Feb 2019, Accepted 19 May 2019, Published online: 31 May 2019

References

  • Sun, C.-W.; Li, H.; Chen, L.-Q. Nanostructured Ceria-Based Materials Synthesis, Properties, and Applications. Energy Environ. Sci. 2012, 5, 8475–8505. DOI:10.1039/c2ee22310d.
  • Zhong, S.-L.; Zhang, L.-F.; Wang, L.; Huang, W.-X.; Fan, C.-M.; Xu, A.-W. Uniform and Porous Ce1–xZnxO2−δ Solid Solution Nanodisks: Preparation and Their CO Oxidation Activity. J. Phys. Chem. C. 2012, 116, 13127–13132. DOI:10.1021/jp3017826.
  • Trovarelli, A. Catalytic Properties of Ceria and CeO2-Containing Materials. Cat. Rev. 1996, 38, 439–520. DOI:10.1080/01614949608006464.
  • Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and Catalytic Applications of CeO2-Based Materials. Chem. Rev. 2016, 116, 5987–6041. DOI:10.1021/acs.chemrev.5b00603.
  • Corma, A.; Atienzar, P.; Garcia, H.; Chane-Ching, J.-Y. Hierarchically Mesostructured Doped CeO2 with Potential for Solar-Cell Use. Nature Mater. 2004, 3, 394–397. DOI:10.1038/nmat1129.
  • Li, P.; Zhou, Y.; Zhao, Z.; Xu, Q.; Wang, X.; Xiao, M.; Zou, Z. Hexahedron Prism-Anchored Octahedronal CeO2: Crystal Facet-Based Homojunction Promoting Efficient Solar Fuel Synthesis. J. Am. Chem. Soc. 2015, 137, 9547–9550. DOI:10.1021/jacs.5b05926.
  • Wang, G.-F.; Mu, Q.-Y.; Chen, T.; Wang, Y.-D. Synthesis, Characterization and Photoluminescence of CeO2 Nanoparticles by a Facile Method at Room Temperature. J. Alloys Compd. 2010, 493, 202–207. DOI:10.1016/j.jallcom.2009.12.053.
  • Phoka, S.; Laokul, P.; Swatsitang, E.; Promarak, V.; Seraphin, S.; Maensiri, S. Synthesis, Structural and Optical Properties of CeO2 Nanoparticles Synthesized by a Simple Polyvinyl Pyrrolidone (PVP) Solution Route. Mater. Chem. Phys. 2009, 115, 423–428. DOI:10.1016/j.matchemphys.2008.12.031.
  • Si, R.; Flytzani, S.-M. Shape and Crystal-Plane Effects of Nanoscale Ceria on the Activity of Au-CeO2 Catalysts for the Water-Gas Shift Reaction. Angew. Chem. Int. Ed. 2008, 47, 2884–2887. DOI:10.1002/anie.200705828..
  • Mogensen, M.; Sammes, N.-M.; Tompsett, G.-A. Physical, Chemical and Electrochemical Properties of Pure and Doped Ceria. Solid State Ionics 2000, 129, 63–94. DOI:10.1016/S0167-2738(99)00318-5.
  • Zhou, K.-B.; Wang, X.; Sun, X.-M.; Peng, Q.; Li, Y.-D. Enhanced Catalytic Activity of Ceria Nanorods from Well-Defined Reactive Crystal Planes. J. Catal. 2005, 229, 206–212. DOI:10.1016/j.jcat.2004.11.004.
  • Yu, T.; Lim, B.; Xia, Y. Aqueous-Phase Synthesis of Single-Crystal Ceria Nanosheets. Angew. Chem. Int. Ed. 2010, 49, 4484–4487. DOI:10.1002/anie.201001521.
  • Giordano, F.; Trovarelli, A.; de Leitenburg, C.; Giona, M. A Model for the Temperature-Programmed Reduction of Low and High Surface Area Ceria. J. Catal. 2000, 193, 273–282. DOI:10.1006/jcat.2000.2900.
  • Mullins, D.-R. The Surface Chemistry of Cerium Oxide. Surf. Sci. Rep. 2015, 70, 42–85. DOI:10.1016/j.surfrep.2014.12.001.
  • Paier, J.; Penschke, C.; Sauer, J. Oxygen Defects and Surface Chemistry of Ceria: Quantum Chemical Studies Compared to Experiment. Chem. Rev. 2013, 113, 3949–3985. DOI:10.1021/cr3004949..
  • Carrettin, S.; Concepcion, P.; Corma, A.; Lopez Nieto, J.-M.; Puntes, V.-F. Nanocrystalline CeO2 Increases the Activity of Au for CO Oxidation by Two Orders of Magnitude. Angew. Chem. Int. Ed. 2004, 43, 2538–2540. DOI:10.1002/anie.200353570.
  • Fu, Z.-W.; Yu, Y.-H.; Li, Z.; Han, D.-M.; Wang, S.-J.; Xiao, M.; Meng, Y.-Z. Surface Reduced CeO2 Nanowires for Direct Conversion of CO2 and Methanol to Dimethyl Carbonate: Catalytic Performance and Role of Oxygen Vacancy. Catalysts 2018, 8, 164. DOI:10.3390/catal8040164.
  • Zhang, D.-S.; Du, X.-J.; Shi, L.-Y.; Gao, R.-H. Shape-Controlled Synthesis and Catalytic Application of Ceria Nanomaterials. Dalton Trans. 2012, 41, 14455–14475. DOI:10.1039/c2dt31759a.
  • Tsunekawa, S.; Fukuda, T.; Kasuya, A. Blue Shift in Ultraviolet Absorption Spectra of Monodisperse CeO2-x Nanoparticles. J. Appl. Phys. 2000, 87, 1318–1321. DOI:10.1063/1.372016.
  • Patsalas, P.; Logothetidis, S.; Sygellou, L.; Kennou, S. Structure-Dependent Electronic Properties of Nanocrystalline Cerium Oxide Films. Phys. Rev. B: Condens. Matter. 2003, 68, 035104. DOI:10.1103/PhysRevB.68.035104.
  • Huo, Z.-Y.; Chen, C.; Liu, X.-W.; Chu, D.-R.; Li, H.-H.; Peng, Q.; Li, Y.-D. One-Pot Synthesis of Monodisperse CeO2 Nanocrystals and Superlattices. Chem. Commun. 2008, 3741–3743. DOI:10.1039/b803215g.
  • Liu, X.-W.; Zhou, K.-B.; Wang, L.; Wang, B.-Y.; Li, Y.-D. Oxygen Vacancy Clusters Promoting Reducibility and Activity of Ceria Nanorods. J. Am. Chem. Soc. 2009, 131, 3140–3141. DOI:10.1021/ja808433d.
  • Yu, T.; Joo, J.; Park, Y.-I.; Hyeon, T. Large-Scale Nonhydrolytic Sol-Gel Synthesis of Uniform-Sized Ceria Nanocrystals with Spherical, Wire, and Tadpole Shapes. Angew. Chem. Int. Ed. 2005, 44, 7411–7414. DOI:10.1002/anie.200500992.
  • Tang, C.-C.; Bando, Y.; Liu, B.-D.; Golberg, D. Cerium Oxide Nanotubes Prepared from Cerium Hydroxide Nanotubes. Adv. Mater. 2005, 17, 3005–3009. DOI:10.1002/adma.200501557.
  • Rao, R.-C.; Yang, M.; Li, C.-S.; Dong, H.-Z.; Fang, S.; Zhang, A.-M. A Facile Synthesis for Hierarchical Porous CeO2 Nanobundles and Their Superior Catalytic Performance for CO Oxidation. J. Mater. Chem. A. 2015, 3, 782–788. DOI:10.1039/c4ta03875d..
  • Si, R.; Zhang, Y.-W.; You, L.-P.; Yan, C.-H. Rare-Earth Oxide Nanopolyhedra, Nanoplates, and Nanodisks. Angew. Chem. Int. Ed. 2005, 44, 3256–3260. DOI:10.1002/anie.200462573.
  • Feng, L.; Li, S.; Li, Y.; Li, H.; Zhang, L.; Zhai, J.; Song, Y.; Liu, B.; Jiang, L.; Zhu, D. Super-Hydrophobic Surfaces: From Natural to Artificial. Adv. Mater. 2002, 14, 1857–1860. DOI:10.1002/adma.200290020.
  • Zhong, L.-S.; Hu, J.-S.; Cao, A.-M.; Liu, Q.; Song, W.-G.; Wan, L.-J. 3D Flowerlike Ceria Micro-Nanocomposite Structure and Its Application for Water Treatment and CO Removal. Chem. Mater. 2007, 19, 1648–1655. DOI:10.1021/cm062471b.
  • Strandwitz, N.-C.; Stucky, G.-D. Hollow Microporous Cerium Oxide Spheres Templated by Colloidal Silica. Chem. Mater. 2009, 21, 4577–4582. DOI:10.1021/cm901516b.
  • Hu, F.-Y.; Chen, J.-J.; Peng, Y.; Song, H.; Li, K.-Z.; Li, J.-J. Novel Nanowire Self-Assembled Hierarchical CeO2 Microspheres for Low Temperature Toluene Catalytic Combustion. Chem. Eng. J. 2018, 331, 425–434. DOI:10.1016/j.cej.2017.08.110.
  • Cao, C.-Y.; Cui, Z.-M.; Chen, C.-Q.; Song, W.-G.; Cai, W. Ceria Hollow Nanospheres Produced by a Template-Free Microwave-Assisted Hydrothermal Method for Heavy Metal Ion Removal and Catalysis. J. Phys. Chem. C. 2010, 114, 9865–9870. DOI:10.1021/jp101553x.
  • Li, Q.-Q.; Liu, J.-W.; Zhao, Y.-H.; Zhao, X.-B.; You, W.-B.; Li, X.; Che, R.-C. Matryoshka Doll"-like CeO2 Microspheres with Hierarchical Structure to Achieve Significantly Enhanced Microwave Absorption Performance. ACS Appl. Mater. Interfaces 2018, 10, 27540–27547. DOI:10.1021/acsami.8b10353.
  • Guo, Z.-Y.; Jian, F.-Y.; Du, F.-L. A Simple Method to Controlled Synthesis of CeO2 Hollow Microspheres. Scripta Mater. 2009, 61, 48–51. DOI:10.1016/j.scriptamat.2009.03.005.
  • Cai, P.-Y.; Yi, X.-F.; Song, H.-J.; Lv, Y. Cataluminescence Sensing of Carbon Disulfide Based on CeO2 Hierarchical Hollow Microspheres. Anal. Bioanal. Chem. 2018, 410, 5113–5122. DOI:10.1007/s00216-018-1141-4..
  • Gao, H.-M.; Fang, H.-Y.; Wu, Y.-C.; Li, M.-L. Controlled Hydrothermal Synthesis and Optical Properties of 3D Flower-like CeO2 Building with 3D Hierarchical Porous Structure. J. Mater. Sci.: Mater. Electron. 2017, 28, 17587–17591. DOI:10.1007/s10854-017-7695-7.
  • Shen, L.-Z.; Zhang, X.-H.; Liu, F.; Liu, G.-Q.; Shen, N. Controllable Template-Free Hydrothermal Synthesis of 3D Porous CeO2 Hollow Nanospheres and Their Optical Performances. J. Mater. Sci.-Mater. Electron 2018, 29, 4961–4966. DOI:10.1007/s10854-017-8456-3..
  • Ni, J.-B.; Gao, J.; Geng, X.-Y.; Wei, H. Facile Hydrothermal Synthesis of Large-Scale Monodisperse 3D Flower-Like CeO2 Nanospheres and Their Excellent Magnetic Properties. J. Mater. Sci.: Mater. Electron. 2017, 28, 12306–12311. DOI:10.1007/s10854-017-7048-6.
  • Majumder, D.; Roy, S. Development of Low-Ppm CO Sensors Using Pristine CeO2 Nanospheres with High Surface Area. ACS Omega 2018, 3, 4433–4440. DOI:10.1021/acsomega.8b00146.
  • Li, L.-F.; Li, C.-Y.; Liu, M.-Z.; Wang, C. Synthesis of CeO2 Porous Nanospheres with Tunable Pore and Particle Sizes and Their Adsorption to Methyl Orange. Nano. 2017, 12, 1750132. DOI:10.1142/S1793292017501326.
  • Liu, H.-W.; Liu, H.-F.; Han, X.-Y. Core-Shell CeO2 Micro/Nanospheres Prepared by Microwave-Assisted Solvothermal Process as High-Stability Anodes for Li-Ion Batteries. J. Solid State Electrochem. 2017, 21, 291–295. DOI:10.1007/s10008-016-3320-6.
  • Yang, Z.; Han, D.; Ma, D.; Liang, H.; Liu, L.; Yang, Y. Fabrication of Monodisperse CeO2 Hollow Spheres Assembled by Nano-Octahedra. Cryst. Growth Des. 2010, 10, 291–295. DOI:10.1021/cg900898r.
  • Yang, Z.-J.; Wei, J.-J.; Yang, H.-X.; Liu, L.; Liang, H.; Yang, Y.-Z. Mesoporous CeO2 Hollow Spheres Prepared by Ostwald Ripening and Their Environmental Applications. Eur. J. Inorg. Chem. 2010, 2010, 3354–3359. DOI:10.1002/ejic.201000030.
  • Wei, J.; Yang, Z.; Yang, Y.; Wei, H. Monodisperse CeO2 Sub-Micro Spherical Aggregates with Controllable Building Blocks. Cryst. Res. Technol. 2011, 46, 201–204. DOI:10.1002/crat.201000479.
  • Cui, R.-R.; Lu, W.-C.; Zhang, L.-M.; Yue, B.-H.; Shen, S.-S. Template-Free Synthesis and Self-Assembly of CeO2 Nanospheres Fabricated with Foursquare Nanoflake. J. Phys. Chem. C. 2009, 113, 21520–21525. DOI:10.1021/jp9065168.
  • Yang, H.-G.; Zeng, H.-C. Preparation of Hollow Anatase TiO2 Nanospheres via Ostwald Ripening. J. Phys. Chem. B. 2004, 108, 3492–3495. DOI:10.1021/jp0377782.
  • Zhang, L.; Yang, H.-Q.; Xie, X.-L.; Zhang, F.-H.; Li, L. Preparation and Photocatalytic Activity of Hollow ZnSe Microspheres via Ostwald Ripening. J. Alloys Compd. 2009, 473, 65–70. DOI:10.1016/j.jallcom.2008.06.018.
  • Wang, W.-S.; Zhen, L.; Xu, C.; Yang, Y.-L.; Shao, W.-Z. Controlled Synthesis of Calcium Tungstate Hollow Microspheres via Ostwald Ripening and Their Photoluminescence Property. J. Phys. Chem. C. 2008, 112, 19390–19398. DOI:10.1021/jp8074783..
  • Kuchibhatla, S.-V.-N.-T.; Karakoti, A.-S.; Bera, D.; Seal, S. One Dimensional Nanostructured Materials. Prog. Mater Sci. 2007, 52, 699–913. DOI:10.1016/j.pmatsci.2006.08.001..
  • Wang, Z.-L.; Feng, X.-D. Polyhedral Shapes of CeO2 Nanoparticles. J. Phys. Chem. B. 2003, 107, 13563–13566. DOI:10.1021/jp036815m.
  • Liu, W.; Deng, T.; Feng, L.-J.; Xie, A.-R.; Zhang, J.-C.; Wang, S.-P.; Liu, X.-F.; Yang, Y.-Z.; Guo, J.-X. Designed Synthesis and Formation Mechanism of CeO2 Hollow Nanospheres and Their Facile Functionalization with Au Nanoparticles. CrystEngComm 2015, 17, 4850–4858. DOI:10.1039/C5CE00569H.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.