239
Views
13
CrossRef citations to date
0
Altmetric
Articles

The effect of monoethanolamine as stabilizing agent in Uncaria gambir Roxb. mediated synthesis of silver nanoparticles and its antibacterial activity

, , , &
Pages 1480-1487 | Received 13 Feb 2019, Accepted 24 May 2019, Published online: 20 Jun 2019

References

  • Ahmed, M. J. ; Murtaza, G. ; Mehmood, A. ; Bhatti, T. M . Green Synthesis of Silver Nanoparticles Using Leaves Extract of Skimmia laureola: Characterization and Antibacterial Activity. Mater. Lett. 2015, 153 , 10–13. DOI: 10.1016/j.matlet.2015.03.143.
  • Ramar, M. ; Manikandan, B. ; Marimuthu, P. N. ; Raman, T. ; Mahalingam, A. ; Subramanian, P. ; Karthick, S. ; Munusamy, A . Synthesis of Silver Nanoparticles Using Solanum Trilobatum Fruits Extract and Its Antibacterial, Cytotoxic Activity against Human Breast Cancer Cell Line MCF 7. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 140 , 223–228. DOI: 10.1016/j.saa.2014.12.060.
  • Wu, J.-T. ; Hsu, S. L.-C . Preparation of Triethylamine Stabilized Silver Nanoparticles for Low-Temperature Sintering. J. Nanopart. Res. 2011, 13 , 3877–3883. DOI: 10.1007/s11051-011-0341-z.
  • Filippo, E. ; Serra, A. ; Manno, D . Poly (Vinyl Alcohol) Capped Silver Nanoparticles as Localized Surface Plasmon Resonance-Based Hydrogen Peroxide Sensor. Sensors Actuators B Chem. 2009, 138 , 625–630. DOI: 10.1016/j.snb.2009.02.056.
  • Kalita, N. K. ; Ganguli, J. N . Hibiscus sabdariffa L. Leaf Extract Mediated Green Synthesis of Silver Nanoparticles and Its Use in Catalytic Reduction of 4-Nitrophenol. Synth. React. Inor. Met-Org. Nano-Met. Chem. 2017, 47 , 788–793. DOI: 10.1080/15533174.2016.1218506.
  • Venkatesham, M. ; Ayodhya, D. ; Madhusudhan, A. ; Babu, N. V. ; Veerabhadram, G . A Novel Green One-Step Synthesis of Silver Nanoparticles Using Chitosan: Catalytic Activity and Antimicrobial Studies. Appl. Nanosci. 2014, 4 , 113–119. DOI: 10.1007/s13204-012-0180-y.
  • Choudhary, M. K. ; Kataria, J. ; Sharma, S . Novel Green Biomimetic Approach for Preparation of Highly Stable Au-ZnO Heterojunctions with Enhanced Photocatalytic Activity. ACS Appl. Nano Mater. 2018, 1 , 1870–1878. DOI: 10.1021/acsanm.8b00272.
  • Choudhary, M. K. ; Kataria, J. ; Bhardwaj, V. K. ; Sharma, S . Green Biomimetic Preparation of Efficient Ag-ZnO Heterojunctions with Excellent Photocatalytic Performance under Solar Light Irradiation: A Novel Biogenic-Deposition-Precipitation Approach. Nanoscale Adv. 2019, 1 , 1035–1044. DOI: 10.1039/C8NA00318A.
  • Venugopal, K. ; Rather, H. A. ; Rajagopal, K. ; Shanthi, M. P. ; Sheriff, K. ; Illiyas, M. ; Rather, R. A. ; Manikandan, E. ; Uvarajan, S. ; Bhaskar, M .; et al. Synthesis of Silver Nanoparticles (AgNPs) for Anticancer Activities (MCF 7 Breast and A549 Lung Cell Lines) of the Crude Extract of Syzygium aromaticum . J. Photochem. Photobiol. B Biol. 2017, 167 , 282–289. DOI: 10.1016/j.jphotobiol.2016.12.013.
  • Jacob, S. J. P. ; Prasad, V. L. S. ; Sivasankar, S. ; Muralidharan, P . Biosynthesis of Silver Nanoparticles Using Dried Fruit Extract of Ficus carica - Screening for Its Anticancer Activity and Toxicity in Animal Models. Food Chem. Toxicol. 2017, 109 , 951–956. DOI: 10.1016/j.fct.2017.03.066.
  • Jang, S. J. ; Yang, I. J. ; Tettey, C. O. ; Kim, K. M. ; Shin, H. M . In-Vitro Anticancer Activity of Green Synthesized Silver Nanoparticles on MCF-7 Human Breast Cancer Cells. Mater. Sci. Eng. C 2016, 68 , 430–435. DOI: 10.1016/j.msec.2016.03.101.
  • Kathiravan, V. ; Ravi, S. ; Ashokkumar, S . Synthesis of Silver Nanoparticles from Melia dubia Leaf Extract and Their in Vitro Anticancer Activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 130 , 116–121. DOI: 10.1016/j.saa.2014.03.107.
  • Nayak, D. ; Pradhan, S. ; Ashe, S. ; Rauta, P. R. ; Nayak, B . Biologically Synthesised Silver Nanoparticles from Three Diverse Family of Plant Extracts and Their Anticancer Activity against Epidermoid A431 Carcinoma. J. Colloid Interface Sci. 2015, 457 , 329–338. DOI: 10.1016/j.jcis.2015.07.012.
  • Singh, J. ; Singh, T. ; Rawat, M . Green Synthesis of Silver Nanoparticles via Various Plant Extracts for anti-Cancer Applications. Glob. J. Nanomed. 2017, 2 , 1–4.
  • Valverde-Alva, M. A. ; García-Fernández, T. ; Villagrán-Muniz, M. ; Sánchez-Aké, C. ; Catanede-Guzman, R. ; Esparza-Alegría, E. ; Sánchez-Valdés, C. F. ; Llamazares, J. L. S. ; Herrera, C. E. M . Synthesis of Silver Nanoparticles by Laser Ablation in Ethanol: A Pulsed Photoacoustic Study. Appl. Surf. Sci. 2015, 355 , 341–349. DOI: 10.1016/j.apsusc.2015.07.133.
  • Mittal, A. K. ; Tripathy, D. ; Choudhary, A. ; Aili, P. V. ; Chatterjee, A. ; Singh, I. P. ; Banerjee, U. C . Bio-Synthesis of Silver Nanoparticles Using Potentilla fulgens Wall. ex Hook. and Its Therapeutic Evaluation as Anticancer and Antimicrobial Agent. Mater. Sci. Eng. C 2015, 53 , 120–127. DOI: 10.1016/j.msec.2015.04.038.
  • Wang, B. ; Zhuang, X. ; Deng, W. ; Cheng, B . Microwave-Assisted Synthesis of Silver Nanoparticles in Alkalic Carboxymethyl Chitosan Solution. Sci. Res. 2010, 02 , 387–390. DOI: 10.4236/eng.2010.25050.
  • Pal, A. ; Shah, S. ; Devi, S . Microwave-Assisted Synthesis of Silver Nanoparticles Using Ethanol as a Reducing Agent. Mater. Chem. Phys. 2009, 114 , 530–532. DOI: 10.1016/j.matchemphys.2008.11.056.
  • Nasretdinova, G. R. ; Fazleeva, R. R. ; Mukhitova, R. K. ; Nizameev, I. R. ; Kadirov, M. K. ; Ziganshina, A. Y. ; Yanilkin, V. V . Electrochemical Synthesis of Silver Nanoparticles in Solution. Electrochem. Commun. 2015, 50 , 69–72. DOI: 10.1016/j.elecom.2014.11.016.
  • Wani, I. A. ; Khatoon, S. ; Ganguly, A. ; Ahmed, J. ; Ganguli, A. K. ; Ahmad, T . Silver Nanoparticles: Large Scale Solvothermal Synthesis and Optical Properties. Mater. Res. Bull. 2010, 45 , 1033–1038. DOI: 10.1016/j.materresbull.2010.03.028.
  • Rosemary, M. J. ; Pradeep, T . Solvothermal Synthesis of Silver Nanoparticles from Thiolates. J. Colloid Interface Sci. 2003, 268 , 81–84. DOI: 10.1016/j.jcis.2003.08.009.
  • Rafique, M. ; Sadaf, I. ; Rafique, M. S. ; Tahir, M. B . A Review on Green Synthesis of Silver Nanoparticles and Their Applications. Artif. Cells, Nanomed. Biotechnol. 2017, 45 , 1272–1291. DOI: 10.1080/21691401.2016.1241792.
  • Logeswari, P. ; Silambarasan, S. ; Abraham, J . Synthesis of Silver Nanoparticles Using Plants Extract and Analysis of Their Antimicrobial Property. J. Saudi Chem. Soc. 2015, 19 , 311–317. DOI: 10.1016/j.jscs.2012.04.007.
  • Ahmed, S. ; Ahmad, M. ; Swami, B. L. ; Ikram, S . A Review on Plants Extract Mediated Synthesis of Silver Nanoparticles for Antimicrobial Applications: A Green Expertise. J. Adv. Res. 2016, 7 , 17–28. DOI: 10.1016/j.jare.2015.02.007.
  • Choudhary, M. K. ; Kataria, J. ; Sharma, S . A Biomimetic Synthesis of Stable Gold Nanoparticles Derived from Aqueous Extract of Foeniculum vulgare Seeds and Evaluation of Their Catalytic Activity. Appl. Nanosci. 2017, 7 , 439–447. DOI: 10.1007/s13204-017-0589-4.
  • Aragao, A. P. ; Oliveira, T. M. ; Quelemes, P. V. ; Perfeito, M. L. G. ; Araujo, M. C. ; Santiago, J. A. S. ; Cardoso, V. S. ; Quaresma, P. ; Leite, J. R. S. A. ; Silva, D. A . Green Synthesis of Silver Nanoparticles Using the Seaweed Gracilaria birdiae and Their Antibacterial Activity. Arab. J. Chem. in press.
  • Singh, K. ; Panghal, M. ; Kadyan, S. ; Chaudhary, U. ; Yadav, J. P . Antibacterial Activity of Synthesized Silver Nanoparticles from Tinospora cordifolia against Multi Drug Resistant Strains of Pseudomonas aeruginosa Isolated from Burn Patients. Nanomed Nanotechnol. 2014, 5 , 1–6. DOI: 10.4172/2157-7439.1000192.
  • Gopinath, V. ; Mubarakali, D. ; Priyadarshini, S. ; Priyadharsshini, N. M. ; Thajuddin, N. ; Velusamy, P . Biosynthesis of Silver Nanoparticles from Tribulus terrestris and Its Antimicrobial Activity: A Novel Biological Approach. Colloids Surface B Biointerfaces. 2012, 96 , 69–74. DOI: 10.1016/j.colsurfb.2012.03.023.
  • Banala, R. R. ; Nagati, V. B. ; Karnati, P. R . Green Synthesis and Characterization of Carica papaya Leaf Extract Coated Silver Nanoparticles through X-Ray Diffraction, Electron Microscopy and Evaluation of Bactericidal Properties. Saudi J. Biol. Sci. 2015, 22 , 637–644. DOI: 10.1016/j.sjbs.2015.01.007.
  • Dipankar, C. ; Murugan, S . The Green Synthesis, Characterization and Evaluation of the Biological Activities of Silver Nanoparticles Synthesized from Iresine herbstii Leaf Aqueous Extracts. Colloids and Surface B Biointerfaces. 2012, 98 , 112–119. DOI: 10.1016/j.colsurfb.2012.04.006.
  • Khalil, M. M. H. ; Ismail, E. H. ; El-Baghdady, K. Z. ; Mohamed, D . Green Synthesis of Silver Nanoparticles Using Olive Leaf Extract and Its Antibacterial Activity. Arab. J. Chem. 2014, 7 , 1131–1139. DOI: 10.1016/j.arabjc.2013.04.007.
  • Rauf, A. ; Rahmawaty.; Siregar, A. Z . The Condition of Uncaria gambir Roxb. as One of Important Medicinal Plants in North Sumatra Indonesia. Procedia Chem. 2015, 14 , 3–10. DOI: 10.1016/j.proche.2015.03.002.
  • Arief, S. ; Gustia, V. ; Wellia, D. V. ; Zulhadjri, Ban, T. ; Ohya, Y . Hydrothermal Synthesized Ag Nanoparticles Using Bioreductor of Gambier Leaf Extract. (Uncaria gambir Roxb). J. Chem. Pharm. Res. 2015, 7 , 189–192.
  • Arief, S. ; Hidayani, P. ; Aferta, L. ; Zulhadjri, Z. ; Ban, T. ; Ohya, Y . Green Chemistry Formation of Stable Ag Nanoparticles (AgNPs) in Isopropanol Solvent. Orient. J. Chem. 2017, 33 , 87–91. DOI: 10.13005/ojc/330109.
  • Jafari, N. ; Karimi, L. ; Mirjalili, M. ; Derakhshan, S. J . Effect of Silver Particle Size on Color and Antibacterial Properties of Silk and Cotton Fabrics. Fibers Polym. 2016, 17 , 888–895. DOI: 10.1007/s12221-016-6052-4.
  • Jia, Z. ; Sun, H. ; Gu, Q . Preparation of Ag Nanoparticles with Triethanolamine as Reducing Agent and Their Antibacterial Property. Colloids Surfaces A: Physicochem. Eng. Aspects 2013, 419 , 174–179. DOI: 10.1016/j.colsurfa.2012.12.003.
  • Yang, X.-C. ; Niu, Y.-L. ; Zhao, N.-N. ; Mao, C. ; Xu, F.-J . A Biocleavable Pullulan-Based Vector via ATRP for Liver Cell-Targeting Gene Delivery. Biomaterials. 2014, 35 , 3873–3884. DOI: 10.1016/j.biomaterials.2014.01.036.
  • Ojo, O. A. ; Oyinloye, B. E. ; Ojo, A. B. ; Afolabi, O. B. ; Peters, O. A. ; Olaiya, O. ; Fadaka, A. ; Jonathan, J. ; Osunlana, O . Green Synthesis of Silver Nanoparticles (AgNPs) Using Talinum Triangulare (Jacq.) Willd. Leaf Extract and Monitoring Their Antimicrobial Activity. J. Bionanosci. 2017, 11 , 292–296. DOI: 10.1166/jbns.2017.1452.
  • Creighton, J. A. ; Eadon, D. G . Ultraviolet-Visible Absorption Spectra of the Colloidal Metallic Elements. J. Chem. Soc. Faraday Trans. 1991, 87 , 3881–3891. DOI: 10.1039/FT9918703881.
  • Amendola, V. ; Bakr, O. M. ; Stellacci, F . A Study of the Surface Plasmon Resonance of Silver Nanoparticles by the Discrete Dipole Approximation Method: Effect of Shape, Size, Structure, and Assembly. Plasmonics 2010, 5 , 85–97. DOI: 10.1007/s11468-009-9120-4.
  • Soshnikova, V. ; Kim, Y. J. ; Singh, P. ; Huo, Y. ; Markus, J. ; Ahn, S. ; Castro-Aceituno, V. ; Kang, J. ; Chokkalingam, M . Cardamom Fruits as a Green Resource for Facile Synthesis of Gold and Silver Nanoparticles and Their Biological Applications. Artif. Cells Nanomed. Biotechnol. 2017, DOI: 10.1080/21691401.2017.1296849.
  • Yan-Yu, R. ; Hui, Y. ; Tao, W. ; Chuang, W . Green Synthesis and Antimicrobial Activity of Monodisperse Silver Nanoparticles Synthesized Using Ginkgo biloba Leaf Extract. Phys. Lett. A 2016, 380 , 3773–3777. DOI: 10.1016/j.physleta.2016.09.029.
  • Choudhary, M. K. ; Kataria, J. ; Sharma, S . Evaluation of Kinetic and Catalytic Properties of Biogenically Synthesized Silver Nanoparticles. J. Clean. Prod. 2018, 198 , 882–890. DOI: 10.1016/j.jclepro.2018.09.015.
  • Parham, S. ; Wicaksono, D. H. B. ; Bagherbaigi, S. ; Lee, S. W. ; Nur, H . Antimicrobial Treatment of Different Metal Oxide Nanoparticles: A Critical Review. J. Chin. Chem. Soc. 2016, 63 , 385–393. DOI: 10.1002/jccs.201500446.
  • Yamamoto, M. ; Kashiwagi, Y. ; Nakamoto, M . Size-Controlled Synthesis of Monodispersed Silver Nanoparticles Capped by Long-Chain Alkyl Carboxylates from Silver Carboxylate and Tertiary Amine. Langmuir 2006, 22 , 8581–8586. DOI: 10.1021/la0600245.
  • Suh, I.-K. ; Ohta, H. ; Waseda, Y . High-Temperature Thermal Expansion of Six Metallic Elements Measured by Dilatation Method and X-Ray Diffraction. J. Mater. Sci. 1988, 23 , 757–758. DOI: 10.1007/BF01174717.
  • Singhal, G. ; Bhavesh, R. ; Kasariya, K. ; Sharma, A. R. ; Singh, R. P . Biosynthesis of Silver Nanoparticles Using Ocimum sanctum (Tulsi) Leaf Extract and Screening Its Antimicrobial Activity. J. Nanopart. Res. 2011, 13 , 2981–2988. DOI: 10.1007/s11051-010-0193-y.
  • Chahardoli, A. ; Karimi, N. ; Fattahi, A . Nigella arvensis Leaf Extract Mediated Green Synthesis of Silver Nanoparticles: Their Characteristic Properties and Biological Efficacy. Adv. Powder Technol. 2018, 29 , 202–210. DOI: 10.1016/j.apt.2017.11.003.
  • Moodley, J. S. ; Krishna, S. B. N. ; Pillay, K. ; Sershen.; Govender, P . Green Synthesis of Silver Nanoparticles from Moringa oleifera Leaf Extracts and Its Antimicrobial Potential. Adv. Nat. Sci. Nanosci. Nanotechnol. 2018, 9 , 1–9. DOI: 10.1088/2043-6254/aaabb2.
  • Khatami, M. ; Sharifi, I. ; Nobre, M. A. L. ; Zafarnia, N. ; Aflatoonian, M. R . Waste-Grass-Mediated Green Synthesis of Silver Nanoparticles and Evaluation of Their Anticancer, Antifungal and Antibacterial Activity. Green Chem. Let. Rev. 2018, 11 , 125–134. DOI: 10.1080/17518253.2018.1444797.
  • Choudhary, M. K. ; Kataria, J. ; Cameotra, S. S. ; Singh, J . A Facile Biomimetic Preparation of Highly Stabilized Silver Nanoparticles Derived from Seed Extract of Vigna radiata and Evaluation of Their Antibacterial Activity. Appl. Nanosci. 2016, 6 , 105–111. DOI: 10.1007/s13204-015-0418-6.
  • Morones, J. R. ; Elechiguerra, J. L. ; Camacho, A. ; Holt, K. ; Kouri, J. B. ; Ram, J. T. ; Yacaman, M. J . The Bactericidal Effect of Silver Nanoparticles. Nanotechnology 2005, 16 , 2346–2353. DOI: 10.1088/0957-4484/16/10/059.
  • Mirzajani, F. ; Ghassempour, A. ; Aliahmadi, A. ; Esmaeili, M. A . Antibacterial Effect of Silver Nanoparticles on Staphylococcus aureus . Res. Microbiol. 2011, 162 , 542–549. DOI: 10.1016/j.resmic.2011.04.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.