174
Views
2
CrossRef citations to date
0
Altmetric
Articles

Effect of preparation method on the catalytic performance of formaldehyde oxidation over octahedral Fe3O4 microcrystals supported Pt catalysts

, , &
Pages 1831-1838 | Received 10 Mar 2019, Accepted 22 Jun 2019, Published online: 15 Jul 2019

References

  • Marsh, G. M.; Youk, A. O. Reevaluation of Mortality Risks from Nasopharyngeal Cancer in the Formaldehyde Cohort Study of the National Cancer Institute. Regul. Toxicol. Pharmacol. 2005, 42, 275–283. DOI: 10.1016/j.yrtph.2005.05.003.
  • Tang, X. J.; Bai, Y.; Duong, A.; Smith, M. T.; Li, L. Y.; Zhang, L. P. Formaldehyde in China: Production, Consumption, Exposure Levels, and Health Effects. Environ. Int. 2009, 35, 1210–1224. DOI: 10.1016/j.envint.2009.06.002.
  • Que, Z. L.; Wang, F. B.; Li, J. Z.; Furuno, T. Assessment on Emission of Volatile Organic Compounds and Formaldehyde from Building Materials. Comp. Part B Eng. 2013, 49, 36–42. DOI: 10.1016/j.compositesb.2013.01.008.
  • Torres, J. Q.; Royer, S.; Bellat, J. P.; Giraudon, J. M.; Lamonier, J. F. Formaldehyde: Catalytic Oxidation as a Promising Soft Way of Elimination. ChemSusChem 2013, 6, 578–592. DOI: 10.1002/cssc.201200809.
  • Huang, H. B.; Xu, Y.; Feng, Q. Y.; Leung, D. Y. C. Low Temperature Catalytic Oxidation of Volatile Organic Compounds: A Review. Catal. Sci. Technol. 2015, 5, 2649–2669. DOI: 10.1039/C4CY01733A.
  • Nie, L. H.; Yu, J. G.; Jaroniec, M.; Tao, F. F. Room-Temperature Catalytic Oxidation of Formaldehyde on Catalysts. Catal. Sci. Technol. 2016, 6, 3649–3669. DOI: 10.1039/c6cy00062b.
  • Bai, B. Y.; Qiao, Q.; Li, J. H.; Hao, J. M. Progress in Research on Catalysts for Catalytic Oxidation of Formaldehyde. Chin. J. Catal. 2016, 37, 102–122. DOI: 10.1016/S1872-2067(15)61007-5.
  • Sekine, Y. Oxidative Decomposition of Formaldehyde by Metal Oxides at Room Temperature. Atmos. Environ. 2002, 36, 5543–5547. DOI: 10.1016/s1352-2310(02)00670-2.
  • Tang, X. F.; Li, Y. G.; Huang, X. M.; Xu, Y. D.; Zhu, H. Q.; Wang, J. G.; Shen, W. J. MnOx-CeO2 Mixed Oxide Catalysts for Complete Oxidation of Formaldehyde: Effect of Preparation Method and Calcination Temperature. Appl. Catal. B Environ. 2006, 62, 265–273. DOI: 10.1016/j.apcatb.2005.08.004.
  • Tian, H.; He, J. H.; Zhang, X. D.; Zhou, L.; Wang, D. H. Facile Synthesis of Porous Manganese Oxide K-OMS-2 Materials and Their Catalytic Activity for Formaldehyde Oxidation. Micropor. Mesopor. Mater. 2011, 138, 118–122. DOI: 10.1016/j.micromeso.2010.09.022.
  • Huang, H. B.; Leung, D. Y. C. Complete elimination of indoor formaldehyde over supported Pt catalysts with etremely low Pt content at ambient temperature. J. Catal. 2011, 280, 60–67. DOI:10.1016/j.jcat.2011.03.003.
  • Zhang, C. B.; Liu, F. D.; Zhai, Y. P.; Ariga, H.; Yi, N.; Liu, Y. C.; Asakura, K.; Flytzani-Stephanopoulos, M.; He, H. Alkali-Metal-Promoted Pt/TiO2 Opens a More Efficient Pathway to Formaldehyde Oxidation at Ambient Temperatures. Angew. Chem. Int. Ed. Engl. 2012, 51, 9628–9632. DOI: 10.1002/anie.201202034.
  • Shi, C.; Wang, Y.; Zhu, A. M.; Chen, B. B.; Au, C. MnxCo3−xO4 Solid Solution as High-Efficient Catalysts for Low-Temperature Oxidation of Formaldehyde. Catal. Commun. 2012, 28, 18–22. DOI: 10.1016/j.catcom.2012.08.003.
  • Nie, L. H.; Yu, J. G.; Li, X. Y.; Cheng, B.; Liu, G.; Jaroniec, M. Enhanced Performance of NaOH-Modified Pt/TiO2 toward Room Temperature Selective Oxidation of Formaldehyde. Environ. Sci. Technol. 2013, 47, 2777–2783. DOI: 10.1021/es3045949.
  • Wang, J. L.; Zhang, G. K.; Zhang, P. Y. Graphene-Assisted Photothermal Effect Promoting Catalytic Activity of Layered MnO2 for Gaseous Formaldehyde Oxidation. Appl. Catal. B Environ. 2018, 239, 77–85. DOI: 10.1016/j.apcatb.2018.08.008.
  • Yang, T. F.; Huo, Y.; Liu, Y.; Rui, Z. B.; Ji, H. B. Efficient Formaldehyde Oxidation over Nickel Hydroxide Promoted Pt/γ-Al2O3 with a Low Pt Content. Appl. Catal. B Environ. 2017, 200, 543–551. DOI: 10.1016/j.apcatb.2016.07.041.
  • Yan, Z. X.; Xu, Z. H.; Yu, J. G.; Jaroniec, M. Highly Active Mesoporous Ferrihydrite Supported Pt Catalyst for Formaldehyde Removal at Room Temperature. Environ. Sci. Technol. 2015, 49, 6637–6644. DOI: 10.1021/acs.est.5b00532.
  • Zhang, J.; Jin, Y.; Li, C. Y.; Shen, Y. N.; Han, L.; Hu, Z. X.; Di, X. W.; Liu, Z. L. Creation of Three-Dimensionally Ordered Macroporous Au/CeO2 Catalysts with Controlled Pore Sizes and Their Enhanced Catalytic Performance for Formaldehyde Oxidation. Appl. Catal. B Environ. 2009, 91, 11–20. DOI: 10.1016/j.apcatb.2009.05.001.
  • Chen, D.; Qu, Z. P.; Shen, S. J.; Li, X. Y.; Shi, Y.; Wang, Y.; Fu, Q.; Wu, J. J. Comparative Studies of Silver Based Catalysts Supported on Different Supports for the Oxidation of Formaldehyde. Catal. Today 2011, 175, 338–345. DOI: 10.1016/j.cattod.2011.03.059.
  • Huang, H. B.; Leung, D. Y. C. Complete Oxidation of Formaldehyde at Room Temperature Using TiO2 Supported Metallic Pd Nanoparticles. ACS Catal. 2011, 1, 348–354. DOI: 10.1021/cs200023p.
  • Bai, B. Y.; Qiao, Q.; Arandiyan, H.; Li, J. H.; Hao, J. M. Three-Dimensional Ordered Mesoporous MnO2-Supported Ag Nanoparticles for Catalytic Removal of Formaldehyde. Environ. Sci. Technol. 2016, 50, 2635–2640. DOI: 10.1021/acs.est.5b03342.
  • Qiao, B. T.; Liu, L. Q.; Zhang, J.; Deng, Y. Q. Preparation of Highly Effective Ferric Hydroxide Supported Noble Metal Catalysts for CO Oxidations: From Gold to Palladium. J. Catal. 2009, 261, 241–244. DOI: 10.1016/j.jcat.2008.11.012.
  • An, N. H.; Wu, P.; Li, S. Y.; Jia, M. J.; Zhang, W. X. Catalytic Oxidation of Formaldehyde over Pt/Fe2O3 Catalysts Prepared by Different Method. Appl. Surf. Sci. 2013, 285P, 805–809. DOI: 10.1016/j.apsusc.2013.08.132.
  • Na, H. B.; Zhu, T. L.; Liu, Z. M. Effect of Preparation Method on the Performance of Pt–Au/TiO2 Catalysts for the Catalytic Co-Oxidation of HCHO and CO. Catal. Sci. Technol. 2014, 4, 2051–2057. DOI: 10.1039/c4cy00020j.
  • Lu, S. H.; Chen, C. C.; Wang, X.; We, S. H.; Zhu, Q. Y.; Huang, F. L.; Li, K. L.; Zhou, X. F.; He, L. L.; Liu, Y. X.; et al. Efficient Catalytic Removal of Formaldehyde over Ag/Co3O4–CeO2 Prepared by Different Method. Catal. Surv. Asia 2018, 22, 63–71. DOI: 10.1007/s10563-018-9240-y.
  • Huang, H. B.; Leung, D. Y. C.; Ye, D. Q. Effect of Reduction Treatment on Structural Properties of TiO2 Supported Pt Nanoparticles and Their Catalytic Activity for Formaldehyde Oxidation. J. Mater. Chem. 2011, 21, 9647–9652. DOI: 10.1039/cljm10413f.
  • An, N. H.; Yu, Q. S.; Liu, G.; Li, S. Y.; Jia, M. J.; Zhang, W. X. Complete Oxidation of Formaldehyde at Ambient Temperature over Supported Pt/Fe2O3 Catalysts Prepared by Colloid-Deposition Method. J. Hazard. Mater. 2011, 186, 1392–1397. DOI: 10.1016/j.jhazmat.2010.12.018.
  • Cui, W. Y.; Yuan, X. L.; Wu, P.; Zheng, B.; Zhang, W. X.; Jia, M. J. Catalytic Properties of Al2O3 Supported Pt–FeOx Catalysts for Complete Oxidation of Formaldehyde at Ambient Temperature. RSC Adv. 2015, 5, 104330–104336. DOI: 10.1039/c5ra19151c.
  • Cui, W. Y.; Xue, D.; Yuan, X. L.; Zheng, B.; Jia, M. J.; Zhang, W. X. Acid-Treated TiO2 Nanobelt Supported Platinum Nanoparticles for the Catalytic Oxidation of Formaldehyde at Ambient Conditions. Appl. Surf. Sci. 2017, 411, 105–112. DOI: 10.1016/j.apsusc.2017.03.169.
  • Cui, W. Y.; Xue, D.; Tan, N. D.; Zheng, B.; Jia, M. J.; Zhang, W. X. Pt Supported on Octahedral Fe3O4 Microcrystals as a Catalyst for Removal of Formaldehyde under Ambient Conditions. Chin. J. Catal. 2018, 39, 1534–1542. DOI: 10.1016/S1872-2067(18)63082-7.
  • Zhang, W.; Gai, L. G.; Li, Z. L.; Jiang, H. H.; Ma, W. Y. Low Temperature Hydrothermal Synthesis of Octahedral Fe3O4 Microcrystals. J. Phys. D: Appl. Phys. 2008, 41, 225001. DOI: 10.1088/0022-3727/41/22/225001.
  • Geng, B. Y.; Ma, J. Z.; You, J. H. Controllable Synthesis of Single-Crystalline Fe3O4 Polyhedra Possessing the Active Basal Facets. J. Cryst. Growth 2008, 8, 1443–1447. DOI: 10.1021/cg700931u.
  • Li, G. N.; Li, L.; Wu, B. H.; Li, J. X.; Yuan, Y.; Shi, J. L. Controlled One-Step Synthesis of Pt Decorated Octahedral Fe3O4 and Its Excellent Catalytic Performance for CO Oxidation. Nanoscale 2015, 7, 17855–17860. DOI: 10.1039/c5nr05933j.
  • Shang, C. M.; Ji, G. B.; Liu, W.; Zhang, X. M.; Lv, H. L.; Du, Y. W. One-Pot in Situ Molten Salt Synthesis of Octahedral Fe3O4 for Efficient Microwave Absorption Application. RSC Adv. 2015, 5, 80450–80456. DOI: 10.1039/c5ra15949k.
  • Wang, Y.; Ren, J. W.; Deng, K.; Gui, L. L.; Tang, Y. Q. Preparation of Tractable Platinum, Rhodium, and Ruthenium Nanoclusters with Small Particle Size in Organic Media. Chem. Mater. 2000, 12, 1622–1627. DOI: 10.1021/cm0000853.
  • An, N. H.; Li, S. Y.; Duchesne, P. N.; Wu, P.; Zhang, W. L.; Lee, J. F.; Cheng, S.; Zhang, P.; Jia, M. J.; Zhang, W. X. Size Effects of Platinum Colloid Particles on the Structure and CO Oxidation Properties of Supported Pt/Fe2O3 Catalysts. J. Phys. Chem. C. 2013, 117, 21254–21262. DOI: 10.1021/jp404266p.
  • Geng, L. L.; Zheng, B.; Wang, X.; Zhang, W. X.; Wu, S. J.; Jia, M. J.; Yan, W. F.; Liu, G. Fe3O4 Nanoparticles Anchored on Carbon Serve the Dual Role of Catalyst and Magnetically Recoverable Entity in the Aerobic Oxidation of Alcohols. ChemCatChem 2016, 8, 805–811. DOI: 10.1002/cctc.201501149.
  • Lyubutin, I. S.; Lin, C. R.; Korzhetskiy, Y. V.; Dmitrieva, T. V.; Chiang, R. K. Mössbauer Spectroscopy and Magnetic Properties of Hematite/Magnetite Nanocomposites. J. Appl. Phys. 2009, 106, 034311. DOI:10.1063/1.3194316.
  • Yamashita, T.; Hayes, P. Analysis of XPS Spectra of Fe2+ and Fe3+ Ions in Oxide Materials. Appl. Surf. Sci. 2008, 254, 2441–2449. DOI: 10.1016/j.apsusc.2007.09.063.
  • Wilson, D.; Langell, M. A. XPS Analysis of Oleylamine/Oleic Acid Capped Fe3O4 Nanoparticles as a Function of Temperature. Appl. Surf. Sci. 2014, 303, 6–13. DOI: 10.1016/j.apsusc.2014.02.006.
  • Xu, Z. H.; Yu, J. G.; Jaroniec, M. Efficient Catalytic Removal of Formaldehyde at Room Temperature Using AlOOH Nanoflakes with Deposited Pt. Appl. Catal. B Environ. 2015, 163, 306–312. DOI: 10.1016/j.apcatb.2014.08.017.
  • Liu, L. Q.; Zhou, F.; Wang, L. G.; Qi, X. J.; Shi, F.; Deng, Y. Q. Low-Temperature CO Oxidation over Supported Pt, Pd Catalysts: Particular Role of FeOx Support for Oxygen Supply during Reactions. J. Catal. 2010, 274, 1–10. DOI: 10.1016/j.jcat.2010.05.022.
  • Zheng, B.; Liu, G.; Geng, L. L.; Cui, J. Y.; Wu, S. J.; Wu, P.; Jia, M. J.; Yan, W. F.; Zhang, W. X. Role of the FeOx Support in Constructing High-Performance Pt/FeOx Catalysts for Low-Temperature CO Oxidation. Catal. Sci. Technol. 2016, 6, 1546–1554. DOI: 10.1039/C5CY00840A.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.