167
Views
6
CrossRef citations to date
0
Altmetric
Articles

Removal of arsenic from aqueous solution using microflower-like δ-Bi2O3 as adsorbent: adsorption characteristics and mechanisms

, , , & ORCID Icon
Pages 2026-2036 | Received 08 Mar 2019, Accepted 18 Jul 2019, Published online: 05 Aug 2019

References

  • Burton, E. D. ; Johnston, S. G. ; Kocar, B. D. Arsenic Mobility during Flooding of Contaminated Soil: The Effect of Microbial Sulfate Reduction. Environ. Sci. Technol. 2014, 48 , 13660–13667. DOI: 10.1021/es503963k.
  • Ge, X. ; Ma, Y. ; Song, X. Y. ; Wang, G. Z. ; Zhang, H. M. ; Zhang, Y. X. ; Zhao, H. J. β-FeOOH Nanorods/Carbon Foam-Based Hierarchically Porous Monolith for Highly Effective Arsenic Removal. ACS Appl. Mater. Interfaces 2017, 9 , 13480–13490. DOI: 10.1021/acsami.7b01275.
  • Kim, D. H. ; Bokare, A. D. ; Koo, M. S. ; Choi, W. Heterogeneous Catalytic Oxidation of as(III) on Nonferrous Metal Oxides in the Presence of H2O2 . Environ. Sci. Technol. 2015, 49 , 3506–3513. DOI: 10.1021/es5056897.
  • Xiao, K. Q. ; Li, L. G. ; Ma, L. P. ; Zhang, S. Y. ; Bao, P. ; Zhang, T. ; Zhu, Y. G. Metagenomic Analysis Revealed Highly Diverse Microbial Arsenic Metabolism Genes in Paddy Soils with Low-Arsenic Contents. Environ. Pollut. 2016, 211 , 1–8. DOI: 10.1016/j.envpol.2015.12.023.
  • Chatterjee, S. ; De, S. Adsorptive Removal of Arsenic from Groundwater Using Chemically Treated Iron Ore Slime Incorporated Mixed Matrix Hollow Fiber Membrane. Sep. Purif. Technol. 2017, 179 , 357–368. DOI: 10.1016/j.seppur.2017.02.019.
  • Yoon, Y. ; Zheng, M. ; Ahn, Y. T. ; Park, W. K. ; Yang, W. S. ; Kang, J. W. Synthesis of Magnetite/Non-Oxidative Graphene Composites and Their Application for Arsenic Removal. Sep. Purif. Technol. 2017, 178 , 40–48. DOI: 10.1016/j.seppur.2017.01.025.
  • Mandal, B. K. ; Suzuki, K. T. Arsenic round the World: A Review. Talanta 2002, 58 , 201–235. DOI: 10.1016/S0039-9140(02)00268-0.
  • Vieira, B. R. C. ; Pintor, A. M. A. ; Boaventura, R. A. R. ; Botelho, C. M. S. ; Santos, S. C. R. Arsenic Removal from Water Using Iron-Coated Seaweeds. J. Environ. Manage. 2017, 192 , 224–233. DOI: 10.1016/j.jenvman.2017.01.054.
  • Sun, T. Y. ; Zhao, Z. W. ; Liang, Z. J. ; Liu, J. ; Shi, W. X. ; Cui, F. Y. Efficient as(III) Removal by Magnetic CuO-Fe3O4 Nanoparticles through Photo-Oxidation and Adsorption under Light Irradiation. J. Colloid Interface Sci. 2017, 495 , 168–177. DOI: 10.1016/j.jcis.2017.01.104.
  • Zhou, Z. ; Liu, Y. G. ; Liu, S. B. ; Liu, H. Y. ; Zeng, G. M. ; Tan, X. F. ; Yang, C. P. ; Ding, Y. ; Yan, Z. L. ; Cai, X. X. Sorption Performance and Mechanisms of Arsenic(V) Removal by Magnetic Gelatin-Modified Biochar. Chem. Eng. J. 2017, 314 , 223–231. DOI: 10.1016/j.cej.2016.12.113.
  • Tu, S. ; Ma, L. Q. Interactive Effects of pH, Arsenic and Phosphorus on Uptake of as and P and Growth of the Arsenic Hyperaccumulator Pteris Vittata L. under Hydroponic Conditions. Environ. Exp. Bot. 2003, 50 , 243–251. DOI: 10.1016/S0098-8472(03)00040-6.
  • Yoon, Y. ; Hwang, Y. ; Ji, M. ; Jeon, B. H. ; Kang, J. W. Ozone/Membrane Hybrid Process for Arsenic Removal in Iron-Containing Water. Desalin. Water Treat. 2011, 31 , 138–143. DOI: 10.5004/dwt.2011.2372.
  • Bruggen, B. V. D. ; Mänttäri, M. ; Nyström, M. Drawbacks of Applying Nanofiltration and How to Avoid Them: A Review. Sep. Purif. Technol. 2008, 63 , 251–263. DOI: 10.1016/j.seppur.2008.05.010.
  • Ge, X. ; Liu, J. ; Song, X. ; Wang, G. ; Zhang, H. ; Zhang, Y. ; Zhao, H. Hierarchical Iron Containing γ-MnO2, Hollow Microspheres: A Facile One-Step Synthesis and Effective Removal of as(III) via Oxidation and Adsorption. Chem. Eng. J. 2016, 301 , 139–148. DOI: 10.1016/j.cej.2016.05.005.
  • Liu, J. ; Ge, X. ; Ye, X. ; Wang, G. ; Zhang, H. ; Zhou, H. ; Zhang, Y. ; Zhao, H. 3D Graphene/δ-MnO2 Aerogels for Highly Efficient and Reversible Removal of Heavy Metal Ions. J. Mater. Chem. A. 2016, 4 , 1970–1979. DOI: 10.1039/C5TA08106H.
  • Lenoble, V. ; Bouras, O. ; Deluchat, V. ; Serpaud, B. ; Bollinger, J. C. Arsenic Adsorption onto Pillared Clays and Iron Oxides. J. Colloid Interf. Sci. 2002, 255 , 52–58. DOI: 10.1006/jcis.2002.8646.
  • Singh, T. S. ; Pant, K. K. Equilibrium, Kinetics and Thermodynamic Studies for Adsorption of as(III) on Activated Alumina. Sep. Purif. Technol. 2004, 36 , 139–147. DOI: 10.1016/S1383-5866(03)00209-0.
  • Zhang, G. ; Xu, X. ; Ji, Q. ; Liu, R. ; Liu, H. ; Qu, J. ; Li, J. Porous Nano-Bimetallic Fe-Mn Cubes with High Valent Mn and Highly Efficient Removal of Arsenic(III). ACS Appl. Mater. Interfaces 2017, 9 , 14868–14877. DOI: 10.1021/acsami.7b02127.
  • Zhou, W. ; Fu, H. G. ; Pan, K. ; Tian, C. G. ; Qu, Y. ; Lu, P. P. ; Sun, C. C. Mesoporous TiO2/α-Fe2O3: Bifunctional Composites for Effective Elimination of Arsenite Contamination through Simultaneous Photocatalytic Oxidation and Adsorption. J. Phys. Chem. C. 2008, 112 , 19584–19589. DOI: 10.1021/jp806594m.
  • Wan, W. C. ; Zhang, R. Y. ; Li, W. ; Liu, H. ; Lin, Y. H. ; Li, L. N. ; Zhou, Y. Graphene-Carbon Nanotube Aerogel as an Ultra-Light, Compressible and Recyclable Highly Efficient Absorbent for Oil and Dyes. Environ. Sci.: Nano 2016, 3 , 107–113. DOI: 10.1039/C5EN00125K.
  • Liu, L. ; Liu, W. ; Zhao, X. L. ; Chen, D. M. ; Cai, R. S. ; Yang, W. Y. ; Komarneni, S. ; Yang, D. J. Selective Capture of Iodide from Solutions by Microrosette-like δ-Bi2O3 . ACS Appl. Mater. Interfaces 2014, 6 , 16082–16090. DOI: 10.1021/am504000n.
  • Xie, J. S. ; Li, L. S. ; Tian, C. ; Han, C. L. ; Zhao, D. F. Template-Free Synthesis of Hierarchical Constructed Flower-like δ-Bi2O3 Microspheres with Photocatalytic Performance. Micro Nano Lett. 2012, 7 , 651–653. DOI: 10.1049/mnl.2012.0201.
  • Zhong, G. H. ; Wang, Y. ; Dai, Z. X. ; Wang, J. L. ; Zeng, Z. Oxygen Vacancy Configuration of δ-Bi2O3: An ab Initio Study. Phys. Stat. Sol. (b) 2009, 246 , 97–101. DOI: 10.1002/pssb.200844271.
  • Diebold, U. The Surface Science of Titanium Dioxide. Surf. Sci. Rep. 2003, 48 , 53–229. DOI: 10.1016/S0167-5729(02)00100-0.
  • Henrich, V. E. ; Dresselhaus, G. ; Zeiger, H. J. Chemisorbed Phases of H2O on TiO2 and SrTiO3 . Solid State Commun. 1977, 24 , 623–626. DOI: 10.1116/1.569464.
  • Namai, Y. ; Matsuoka, O. Chain Structures of Surface Hydroxyl Groups Formed via Line Oxygen Vacancies on TiO2 (110) Surfaces Studied Using Noncontact Atomic Force Microscopy. J. Phys. Chem. B. 2005, 109 , 23948–23954. DOI: 10.1021/jp058210r.
  • Zhang, Y. ; Dou, X. M. ; Yang, M. ; He, H. ; Yu, Y. B. ; He, S. L. Adsorption Mechanism of Arsenic on Metal Oxide Adsorbent 1. Characterization and the Role of Metal Surface Hydroxyl Groups. Acta Scien. Circum. 2006, 26 , 1586–1591. DOI: 10.1016/S1872-2040(06)60041-8.
  • Zhu, N. Y. ; Yan, T. M. ; Qiao, J. ; Cao, H. L. Adsorption of Arsenic, Phosphorus and Chromium by Bismuth Impregnated Biochar: Adsorption Mechanism and Depleted Adsorbent Utilization. Chemosphere 2016, 164 , 32–40. DOI: 10.1016/j.chemosphere.2016.08.036.
  • Lacasa, E. ; Cañizares, P. ; Rodrigo, M. A. ; Fernández, F. J. Electro-Oxidation of as(III) with Dimensionally-Stable and Conductive-Diamond Anodes. J. Hazard. Mater. 2012, 203 , 22–28. DOI: 10.1016/j.jhazmat.2011.11.059.
  • Meng, X. G. ; Bang, S. ; Korfiatis, G. P. Effects of Silicate, Sulfate, and Carbonate on Arsenic Removal by Ferric Chloride. Water Res. 2000, 34 , 1255–1261. DOI: 10.1016/S0043-1354(99)00272-9.
  • Raul, P. K. ; Devi, R. R. ; Umlong, I. M. ; Thakur, A. J. ; Banerjee, S. ; Veer, V. Iron Oxide Hydroxide Nanoflower Assisted Removal of Arsenic from Water. Mater. Res. Bull. 2014, 49 , 360–368. DOI: 10.1016/j.materresbull.2013.09.015.
  • Bitonto, L. D. ; Volpe, A. ; Pagano, M. ; Bagnuolo, G. ; Mascolo, G. ; Parola, V. L. ; Leo, P. D. ; Pastore, C. Amorphous Boron-Doped Sodium Titanates Hydrates: Efficient and Reusable Adsorbents for the Removal of Pb2+ from Water. J. Hazard. Mater. 2017, 324 , 168–177. DOI: 10.1016/j.jhazmat.2016.10.046.
  • Ho, Y. S. ; Mckay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34 , 451–465. DOI: 10.1016/S0032-9592(98)00112-5.
  • Liu, H. ; Zuo, K. C. ; Vecitis, C. D. Titanium Dioxide-Coated Carbon Nanotube Network Filter for Rapid and Effective Arsenic Sorption. Environ. Sci. Technol. 2014, 48 , 13871–13879. DOI: 10.1021/es502312t.
  • Tresintsi, S. ; Simeonidis, K. ; Estrade, S. ; Martinez-Boubeta, C. ; Vourlias, G. ; Pinakidou, F. ; Katsikini, M. ; Paloura, E. C. ; Stavropoulos, G. ; Mitrakas, M. Tetravalent Manganese Feroxyhyte: A Novel Nanoadsorbentequally Selective for as(III) and as(V) Removal from Drinking Water. Environ. Sci. Technol. 2013, 47 , 9699–9705. DOI: 10.1021/es4009932.
  • Hu, X. ; Ding, Z. H. ; Zimmerman, A. R. ; Wang, S. S. ; Gao, B. Batch and Column Sorption of Arsenic onto Iron-Impregnated Biochar Synthesized through Hydrolysis. Water Res. 2015, 68 , 206–216. DOI: 10.1016/j.watres.2014.10.009.
  • Babaee, Y. ; Mulligan, C. N. ; Rahaman, M. S. Removal of Arsenic (III) and Arsenic (V) from Aqueous Solutions through Adsorption by Fe/Cu Nanoparticles. J. Chem. Technol. Biotechnol. 2018, 93 , 63–71. DOI: 10.1002/jctb.5320.
  • Gupta, K. ; Ghosh, U. C. Arsenic Removal Using Hydrous Nanostructure Iron(III)-Titanium(IV) Binary Mixed Oxide from Aqueous Solution. J. Hazard. Mater. 2009, 161 , 884–892. DOI: 10.1016/j.jhazmat.2008.04.034.
  • Feng, L. Y. ; Cao, M. H. ; Ma, X. Y. ; Zhu, Y. S. ; Hu, C. W. Superparamagnetic High-Surface-Area Fe3O4 Nanoparticles as Adsorbents for Arsenic Removal. J. Hazard. Mater. 2012, 217 , 439–446. DOI: 10.1016/j.jhazmat.2012.03.073.
  • Ge, X. ; Song, X. Y. ; Ma, Y. ; Zhou, H. J. ; Wang, G. Z. ; Zhang, H. M. ; Zhang, Y. X. ; Zhao, H. J. ; Wong, P. K. Fabrication of Hierarchical Iron-Containing MnO2 Hollow Microspheres Assembled by Thickness-Tunable Nanosheets for Efficient Phosphate Removal. J. Mater. Chem. A. 2016, 4 , 14814–14826. DOI: 10.1039/C6TA05386F.
  • Wu, Z. F. ; Shen, Y. H. ; Xie, A. J. Synthesis of Porous Flowerlike Nano α-Bi2O3 by Microwave Dielectric Heating. Chinese J. Inorg. Chen. 2010, 26 , 1880–1884.
  • Fruth, V. ; Ianculescu, A. ; Berger, D. ; Preda, S. ; Voicu, G. ; Tenea, E. ; Popa, M. Synthesis, Structure and Properties of Doped Bi2O3 . J. Eur. Ceram. Soc. 2006, 26 , 3011–3016. DOI: 10.1016/j.jeurceramsoc.2006.02.019.
  • IIrmawati, R. ; Nasriah, M. N. N. ; Taufiq-Yap, Y. H. ; Hamid, S. B. A. Characterization of Bismuth Oxide Catalysts Prepared from Bismuth Trinitrate Pentahydrate: Influence of Bismuth Concentration. Catal. Today. 2004, 93 , 701–709. DOI: 10.1016/j.cattod.2004.06.065.
  • Fan, H. T. ; Teng, X. M. ; Pan, S. S. ; Ye, C. ; Li, G. H. ; Zhang, L. D. Optical Properties of δ-Bi2O3 Thin Films Grown by Reactive Sputtering. Appl. Phys. Lett. 2005, 87 , 231916. DOI: 10.1063/1.2136351.
  • Hardcastle, F. D. ; Wachs, I. E. The Molecular Structure of Bismuth Oxide by Raman Spectroscopy. J. Solid State Chem. 1992, 97 , 319–331. DOI: 10.1016/0022-4596(92)90040-3.
  • Bang, S. ; Johnson, M. D. ; Korfiatis, G. P. ; Meng, X. G. Chemical Reactions between Arsenic and Zero-Valent Iron in Water. Water Res. 2005, 39 , 763–770. DOI: 10.1016/j.watres.2004.12.022.
  • Mohan, D. ; Pittman, C. U. Arsenic Removal from Water/Wastewater Using Adsorbents—A Critical Review. J. Hazard. Mater. 2007, 142 , 1–53. DOI: 10.1016/j.jhazmat.2007.01.006.
  • Song, Q. ; Li, L. ; Luo, H. X. ; Liu, Y. ; Yang, C. L. Hierarchical Nanoflower-Ring Structure Bi2O3/(BiO)2CO3 Composite for Photocatalytic Degradation of Rhodamine B. Chin. J. Inorg. Chem. 2017, 33 , 1161–1171. DOI: 10.11862/CJIC.2017.139.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.