215
Views
4
CrossRef citations to date
0
Altmetric
Articles

Surface excess at water/air interface and micellization in solutions of an amphiphilic triblock copolymer

, &
Pages 2107-2115 | Received 07 Jun 2019, Accepted 29 Jul 2019, Published online: 12 Aug 2019

References

  • Marcos, X. ; Carrillo-Nava, E. ; Pérez-Casas, S. Interactions between a Triblock Copolymer and Hydroxyethyl Cellulose in Aqueous Solution and Their Use in the Solubilization of Amiodarone. Colloids Surfaces A Physicochem. Eng. Asp. 2016, 504 , 86–94. DOI: 10.1016/j.colsurfa.2016.05.057.
  • Bodratti, A. M. ; Sarkar, B. ; Alexandridis, P. Adsorption of Poly(Ethylene Oxide)-Containing Amphiphilic Polymers on Solid-Liquid Interfaces: Fundamentals and Applications. Adv. Colloid Interface Sci. 2017, 244 , 132–163. DOI: 10.1016/j.cis.2016.09.003.
  • Mansur, C. ; Spinelli, L. ; Gonzalez, G. ; Lucas, E. F. Evaluation of the Physical-Chemical Properties of Poly(Ethylene Oxide)-Block-Poly(Propylene Oxide) by Different Characterization Techniques. Macromol. Symp. 2007, 258 , 5–24. DOI: 10.1002/masy.200751202.
  • He, Z. ; Ma, Y. ; Alexandridis, P. Comparison of Ionic Liquid and Salt Effects on the Thermodynamics of Amphiphile Micellization in Water. Colloids Surfaces A Physicochem. Eng. Asp. 2018, 559 , 159–168. DOI: 10.1016/j.colsurfa.2018.09.061.
  • Liu, S. J. ; Li, L. Multiple Phase Transition and Scaling Law for Poly(Ethylene Oxide)-Poly(Propylene Oxide)-Poly(Ethylene Oxide) Triblock Copolymer in Aqueous Solution. ACS Appl. Mater. Interfaces 2015, 7 , 2688–2697. DOI: 10.1021/am507749w.
  • Chu, B. ; Zhou, Z. Physical Chemistry of Polyoxyalkylene Block Copolymer Surfactants. In Nonionic Surfactants. Polyoxyalkylene Block Copolymers, Nace, V. , Ed.; Routledge: New York, 2017. DOI: 10.1201/9780203745656.
  • Joshi, T. P. Cloud Point Phenomena of Mixed Block Copolymers. J. Dispers. Sci. Technol. 2016, 37 , 816–819. DOI: 10.1080/01932691.2015.1065417.
  • Vieira, J. B. ; Thomas, R. K. ; Li, Z. X. ; Penfold, J. Unusual Micelle and Surface Adsorption Behavior in Mixtures of Surfactants with an Ethylene Oxide-Propylene Oxide Triblock Copolymer. Langmuir 2005, 21 , 4441–4451. DOI: 10.1021/la050040m.
  • Røn, T. ; Chronakis, I. S. ; Lee, S. Lubrication of Soft and Hard Interfaces with Thermo-Responsive F127 Hydrogel. Polymer (Guildf) 2014, 55 , 5708–5717. DOI: 10.1016/j.polymer.2014.08.068.
  • Shin, S. J. ; Lee, J. H. ; So, J. ; Min, K. Anti-Adhesive Effect of Poloxamer-Based Thermo-Sensitive Sol-Gel in Rabbit Laminectomy Model. J. Mater. Sci. Mater. Med. 2016, 27 , DOI: 10.1007/s10856-016-5773-7.
  • Davis, C. R. ; Travis Rappleye, C. ; Than, P. A. ; Rodrigues, M. ; Findlay, M. W. ; Bishop, S. N. ; Whitmore, A. J. ; Maan, Z. N. ; McGoldrick, R. B. ; Grobbelaar, A. O. ; et al. Sutureless Microsurgical Anastomosis Using an Optimized Thermoreversible Intravascular Poloxamer Stent. Plast. Reconstr. Surg. 2016, 137 , 546–556. DOI: 10.1097/01.prs.0000475774.37267.3f.
  • Djekic, L. ; Krajisnik, D. ; Martinovic, M. ; Djordjevic, D. ; Primorac, M. Characterization of Gelation Process and Drug Release Profile of Thermosensitive Liquid Lecithin/Poloxamer 407 Based Gels as Carriers for Percutaneous Delivery of Ibuprofen. Int. J. Pharm. 2015, 490 , 180–189. DOI: 10.1016/j.ijpharm.2015.05.040.
  • You, X. ; Xing, Q. ; Tuo, J. ; Song, W. ; Zeng, Y. ; Hu, H. Optimizing Surfactant Content to Improve Oral Bioavailability of Ibuprofen in Microemulsions: Just Enough or More than Enough? Int. J. Pharm. 2014, 471 , 276–284. DOI: 10.1016/j.ijpharm.2014.05.031.
  • Mura, P. ; Mennini, N. ; Nativi, C. ; Richichi, B. In Situ Mucoadhesive-Thermosensitive Liposomal Gel as a Novel Vehicle for Nasal Extended Delivery of Opiorphin. Eur. J. Pharm. Biopharm. 2018, 122 , 54–61. (June 2017), DOI: 10.1016/j.ejpb.2017.10.008.
  • Zeng, N. ; Seguin, J. ; Destruel, P. L. ; Dumortier, G. ; Maury, M. ; Dhotel, H. ; Bessodes, M. ; Scherman, D. ; Mignet, N. ; Boudy, V. Cyanine Derivative as a Suitable Marker for Thermosensitive in Situ Gelling Delivery Systems: In Vitro and in Vivo Validation of a Sustained Buccal Drug Delivery. Int. J. Pharm. 2017, 534 , 128–135. DOI: 10.1016/j.ijpharm.2017.09.073.
  • Antunes, F. E. ; Gentile, L. ; Oliviero Rossi, C. ; Tavano, L. ; Ranieri, G. A. Gels of Pluronic F127 and Nonionic Surfactants from Rheological Characterization to Controlled Drug Permeation. Colloids Surf. B Biointerfaces 2011, 87 , 42–48. DOI: 10.1016/j.colsurfb.2011.04.033.
  • Beck-Broichsitter, M. ; Ruge, C. A. ; Bohr, A. Impact of Triblock Copolymers on the Biophysical Function of Naturally-Derived Lung Surfactant. Colloids Surf. B Biointerfaces 2017, 156 , 262–269. DOI: 10.1016/j.colsurfb.2017.05.044.
  • Alexandridis, P. ; Holzwarth, J. F. ; Hatton, T. A. Micellization of Poly(Ethylene Oxide)-Poly(Propylene Oxide)-Poly(Ethylene Oxide) Triblock Copolymers in Aqueous Solutions: Thermodynamics of Copolymer Association. Macromolecules 1994, 27 , 2414–2425. DOI: 10.1021/ma00087a009.
  • Holmberg, B. ; Kronberg, B. ; Lindman, B.K. J. Surfactants and Polymers in Aqueous Solution , 2nd ed.; John Wiley & Sons, Ltd: New York, 2002.
  • Quirion, F. Activation Thermodynamics and Concentration Scaling of the Viscosity of Unimeric and Aggregated Poloxamer EO 93 PO 54 EO 93 in Water. Macromolecules 2015, 48 , 8629–8640. DOI: 10.1021/acs.macromol.5b02247.
  • Giusti, F. ; Popot, J. L. ; Tribet, C. Well-Defined Critical Association Concentration and Rapid Adsorption at the Air/Water Interface of a Short Amphiphilic Polymer, Amphipol A8-35: A Study by Förster Resonance Energy Transfer and Dynamic Surface Tension Measurements. Langmuir 2012, 28 , 10372–10380. DOI: 10.1021/la300774d.
  • Kiss, É. ; Keszthelyi, T. ; Kormány, G. ; Hakkel, O. Adsorbed and Spread Layers of Poly(Ethylene Oxide)-Poly(Propylene Oxide)-Poly(Ethylene Oxide) Block Copolymers at the Air-Water Interface Studied by Sum-Frequency Vibrational Spectroscopy and Tensiometry. Macromolecules 2006, 39 , 9375–9384. DOI: 10.1021/ma061161b.
  • Truszkowska, D. ; Henrich, F. ; Schultze, J. ; Koynov, K. ; Räder, H. J. ; Butt, H. J. ; Auernhammer, G. K. Forced Dewetting Dynamics of High Molecular Weight Surfactant Solutions. Colloids Surfaces A Physicochem. Eng. Asp. 2017, 521 , 30–37. DOI: 10.1016/j.colsurfa.2016.07.073.
  • Goswami, A. ; Hassan, P. A. ; Bhagwat, S. S. Static and Dynamic Surface Tension Behaviour of a Triblock Copolymer and a Non Ionic Surfactant Mixture. Colloids Surf. A Physicochem. Eng. Asp. 2015, 484 , 190–196. DOI: 10.1016/j.colsurfa.2015.07.019.
  • Rego, A. C. B. ; de Melo, J. F. ; Neto, A. O. W. ; Fonseca, J. L. C. Coil Interpenetration, Segment Aggregation and Adsorption of PEG at Water/Air Interface. J. Surfact. Deterg. 2017, 20 , 977–983. DOI: 10.1007/s11743-017-1959-3.
  • Vekariya, R. L. Effects of Cationic Head Groups of Ionic Liquid on Micellization in Aqueous Solution of PEO-PPO-PEO Triblock Copolymer. J. Dispers. Sci. Technol. 2017, 38 , 1594–1599. DOI: 10.1080/01932691.2016.1263799.
  • Vekariya, R. L. Reduction of Micellar Size of PEO − PPO − PEO Triblock Copolymer in Presence of Ionic Liquid in Aqueous Solutions: A SANS Study. J. Dispers. Sci. Technol. 2018, 39 , 517–521. DOI: 10.1080/01932691.2017.1331449.
  • Lunagariya, J. ; Kumar, N. S. ; Asif, M. ; Dhar, A. ; Vekariya, R. L. Dependency of Anion and Chain Length of Imidazolium Based Ionic Liquid on Micellization of the Block Copolymer F127 in Aqueous Solution: An Experimental Deep Insight. Polymers (Basel) 2017, 9 , (285. DOI: 10.3390/polym9070285.
  • Mirgorodskaya, A. B. ; Yatskevich, E. I. ; Zakharova, L. Y. ; Konovalov, A. I. Gemini Surfactant-Nonionic Polymer Mixed Micellar Systems. Colloid J. 2012, 74 , 91–98. DOI: 10.1134/S1061933X11060135.
  • Mahajan, R. K. ; Vohra, K. K. ; Aswal, V. K. Structural Behavior of Aggregate Assemblies of Cationic Surfactants and Their Mixtures with Triblock Polymers. J. Dispers. Sci. Technol. 2013, 34 , 244–251. DOI: 10.1080/01932691.2012.659107.
  • Padasala, S. ; Patel, V. ; Singh, K. ; Ray, D. ; Aswal, V. K. ; Bahadur, P. Effect of Polymers on Worm-like Micelles of Cetyltrimethylammonium Tosylate. Colloids Surf. A Physicochem. Eng. Asp. 2016, 502 , 147–158. DOI: 10.1016/j.colsurfa.2016.04.064.
  • Nakashima, K. ; Bahadur, P. Aggregation of Water-Soluble Block Copolymers in Aqueous Solutions: Recent Trends. Adv. Colloid Interface Sci. 2006, 123–126 , 75–96. DOI: 10.1016/j.cis.2006.05.016.
  • Kuzmenka, D. J. ; Granick, S. The Collapse of Poly(Ethylene Oxide) Monolayers. Macromolecules 1988, 21 , 779–782. DOI: 10.1021/ma00181a038.
  • Nambam, J. S. ; Philip, J. Effects of Interaction of Ionic and Nonionic Surfactants on Self-Assembly of PEO-PPO-PEO Triblock Copolymer in Aqueous Solution. J. Phys. Chem. B 2012, 116 , 1499–1507. DOI: 10.1021/jp208902a.
  • Díez-Pascual, A. M. ; Compostizo, A. ; Crespo-Colín, A. ; Rubio, R. G. ; Miller, R. Adsorption of Water-Soluble Polymers with Surfactant Character. Adsorption Kinetics and Equilibrium Properties. J. Colloid Interface Sci. 2007, 307 , 398–404. DOI: 10.1016/j.jcis.2006.11.056.
  • da Silva, G. C. ; Rossi, C. G. F. T. ; Dantas Neto, A. A. ; Dantas, T. N. C. ; Fonseca, J. L. C. Characterization of Wormlike Micellar Systems Using DLS, Rheometry and Tensiometry. Colloids Surfaces A Physicochem. Eng. Asp. 2011, 377 , 35–43. DOI: 10.1016/j.colsurfa.2010.12.016.
  • Hiemenz, P. C. ; Rajagopalan, R. Principles of Colloid and Surface Chemistry , 3rd ed.; Marcel Dekker: New York, 1997.
  • de Lima, C. R. M. ; Pereira, M. R. ; Fonseca, J. L. C. Equilibrium and Kinetic Aspects of Sodium Cromoglycate Adsorption on Chitosan: Mass Uptake and Surface Charging Considerations. Colloids Surf. B Biointerfaces 2013, 109 , 52–58. DOI: 10.1016/j.colsurfb.2013.03.025.
  • Dai, C. ; Fang, J. ; Ding, Q. ; Wang, T. ; Zhao, M. ; Wu, Y. Study on Adsorption Characteristic of Novel Nonionic Fluorocarbon Surfactant (4-Hydroxyethyl Ether) (Pentadecafluoro-Alkyl) Amide at Coal-Water Interface. Colloid Polym. Sci. 2018, 296 , 21–30. DOI: 10.1007/s00396-017-4207-5.
  • Alexandridis, P. ; Hatton, T. A. Poly(Ethylene Oxide)-Poly(Propylene Oxide)-Poly(Ethylene Oxide) Block-Copolymer Surfactants in Aqueous-Solutions and at Interfaces - Thermodynamics, Structure, Dynamics, and Modeling. Colloids Surf. A Physicochem. Eng. Asp. 1995, 96 , 1–46. DOI: 10.1016/0927-7757(94)03028-X.
  • Bera, A. ; Mandal, A. ; Belhaj, H. ; Kumar, T. Enhanced Oil Recovery by Nonionic Surfactants considering Micellization, Surface, and Foaming Properties. Pet. Sci. 2017, 14 , 362–371. DOI: 10.1007/s12182-017-0156-3.
  • Horiuchi, T. ; Sakai, T. ; Sanada, Y. ; Watanabe, K. ; Aida, M. ; Katsumoto, Y. Association Behavior of Poly(Ethylene Oxide)-Poly(Propylene Oxide) Alternating Multiblock Copolymers in Water toward Thermally Induced Phase Separation. Langmuir 2017, 33 , 14649–14656. DOI: 10.1021/acs.langmuir.7b02810.
  • Freundlich, H. M. F. Über Die Adsorption in Lösungen. Zeitschrift Fur Phys. Chemie - Leipzig 1906, 57A , 385–470.
  • Nourafkan, E. Evaluation of Adsorption of Nonionic Surfactants Blend at Water/Oil Interfaces. J. Dispers. Sci. Technol. 2018, 39 , 665–675. DOI: 10.1080/01932691.2017.1381618.
  • Ivanova, R. ; Alexandridis, P. ; Lindman, B. Interaction of Poloxamer Block Copolymers with Cosolvents and Surfactants. Colloids Surf. A Physicochem. Eng. Asp 2001, 183–185 , 41–53. DOI: 10.1016/S0927-7757(01)00538-6.
  • Sharma, R. K. ; Shah, U. Aggregation Behavior of PEO-PPO-PEO Tri-Block Copolymer (Pluronic® L64) in Nonionic Surfactant Additives Environment. TSD. 2014, 51 , 274–281. DOI: 10.3139/113.110308.
  • Sharma, R. K. ; Shaikh, S. ; Ray, D. ; Aswal, V. K. Binary Mixed Micellar Systems of PEO-PPO-PEO Block Copolymers for Lamotrigine Solubilization: A Comparative Study with Hydrophobic and Hydrophilic Copolymer. J. Polym. Res. 2018, 25 , DOI: 10.1007/s10965-018-1473-y.
  • Monteiro, E. E. C. E. C. ; Fonseca, J. L. C. L. C. Phase Segregation and Viscoelastic Behavior of Poly(Ether Urethane Urea)S. J. Appl. Polym. Sci. 1997, 65 , 2227–2236. DOI: 10.1002/(SICI)1097-4628(19970912)65:11<2227::AID-APP20>3.0.CO;2-Z.
  • da Silva, G. C. ; De Morais, W. A. ; Neto, A. A. D. ; Dantas, T. N. C. ; Fonseca, J. L. C. The Relationship between Rheology and Dynamic Light Scattering for a Xylene/Water/ButOH/C12E9 Microemulsion. Colloids Surfaces A Physicochem. Eng. Asp. 2012, 397 , 42–47. DOI: 10.1016/j.colsurfa.2012.01.027.
  • de Lima, C. R. M. ; de Morais, W. A. ; Silva, G. T. M. ; Nunes, J. S. ; Wanderley Neto, A. O. ; Pereira, M. R. ; Fonseca, J. L. C. Preparation and Characterization of Dispersions Based on Chitosan and Poly(Styrene Sulfonate). Colloid Polym. Sci. 2017, 295 , 1071–1078. DOI: 10.1007/s00396-017-4099-4.
  • de Morais, W. A. ; Silva, G. T. M. ; Nunes, J. S. ; Wanderley Neto, A. O. ; Pereira, M. R. ; Fonseca, J. L. C. Interpolyelectrolyte Complex Formation: From Lyophilic to Lyophobic Colloids. Colloids Surf. A Physicochem. Eng. Asp. 2016, 498 , 112–120. DOI: 10.1016/j.colsurfa.2016.03.052.
  • de Lima, C. R. M. ; de Souza, P. R. S. ; Stopilha, R. T. ; de Morais, W. A. ; Silva, G. T. M. ; Nunes, J. S. Wanderley Neto, A. O. ; Pereira, M. R. ; Fonseca, J. L. C. Formation and Structure of Chitosan–Poly(Sodium Methacrylate) Complex Nanoparticles. J. Dispers. Sci. Technol. 2017, 39 , 1–9. DOI: 10.1080/01932691.2017.1296772.
  • de Oliveira, V. A. V. ; de Morais, W. A. ; Pereira, M. R. ; Fonseca, J. L. C. Dynamic Light Scattering in Semidilute and Concentrated Chitosan Solutions. Eur. Polym. J. 2012, 48 , 1932–1939. DOI: 10.1016/j.eurpolymj.2012.07.017.
  • de Morais, W. A. ; Pereira, M. R. ; Fonseca, J. L. C. Characterization of Gelification of Chitosan Solutions by Dynamic Light Scattering. Carbohydr. Polym. 2012, 87 , 2376–2380. DOI: 10.1016/j.carbpol.2011.11.002.
  • Pal, A. ; Maan, R. Micellization Behavior of Anionic Surface Active Ionic Liquid 1-Butyl-3-Methylimidazolium Dodecylbenzenesulfonate in Aqueous Solutions of Nonionic Polymer Polyethylene Glycol: Insights into Competing Mechanisms. J. Mol. Liq. 2019, 274 , 183–192. DOI: 10.1016/j.molliq.2018.10.127.
  • Pal, A. ; Maan, R. Interactional Behavior of Surface Active Ionic Liquid Lauryl Isoquinolinium Bromide and Anionic Polyelectrolyte Poly(4-Styrenesulfonic Acid-Co-Maleic Acid) Sodium Salt in Aqueous Solution. Colloid Polym. Sci. 2018, 296 , 483–494. DOI: 10.1007/s00396-018-4263-5.
  • Xu, Y. ; Shi, K. ; Zhao, S. ; Guo, X. ; Wang, J. Block Length Determines the Adsorption Dynamics Mode of Triblock Copolymers to a Hydrophobic Surface. Chem. Eng. Sci. 2016, 142 , 180–189. DOI: 10.1016/j.ces.2015.11.045.
  • Song, X. ; Zhao, S. ; Fang, S. ; Ma, Y. ; Duan, M. Mesoscopic Simulations of Adsorption and Association of PEO-PPO-PEO Triblock Copolymers on a Hydrophobic Surface: From Mushroom Hemisphere to Rectangle Brush. Langmuir 2016, 32 , 11375–11385. DOI: 10.1021/acs.langmuir.6b02414.
  • Quintana, J. R. ; Villacampa, M. ; Munoz, M. ; Andrio, A. ; Katime, I. A. Micellization of a Polystyrene-Block-Poly(Ethylene/Propylene) Copolymer in n-Alkanes. 1. Thermodynamic Study. Macromolecules 1992, 25 , 3125–3128. DOI: 10.1021/ma00038a016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.