214
Views
14
CrossRef citations to date
0
Altmetric
Articles

Synthesis of ZnO/ZnS core/shell microsphere and its photocatalytic activity for methylene blue and eosin dyes degradation

, , , , , , , & show all
Pages 2152-2158 | Received 10 May 2019, Accepted 03 Aug 2019, Published online: 21 Aug 2019

References

  • Rezani, S. ; Ponraj, M. ; Talaiekhozani, A. ; Mohamad, S. E. ; Din, M. F. M. ; Taib, S. M. ; Sairan, F. M. Perspectives of Phytoremediation Using Water Hyacinth for Removal of Heavy Metals, Organic and Inorganic Pollutants in Wastewater. J. Environ. Manage. 2015, 163 , 125–133. DOI: 10.1016/j.jenvman.2015.08.018.
  • Huang, S. ; Shi, J. Monolithic Macroporous Carbon Materials as High-Performance and Ultralow-Cost Sorbents for Efficiently Solving Organic Pollution. Ind. Eng. Chem. Res. 2014, 53 , 4888–4893. DOI: 10.1021/ie5003558.
  • Zhu, J. ; Liu, B. ; Li, L. ; Zeng, Z. ; Zhao, W. ; Wang, G. ; Guan, X. Simple and Green Fabrication of a Superhydrophobic Surface by One-Step Immersion for Continuous Oil/Water Separation. J. Phys. Chem. A. 2016, 120 , 5617–5623. DOI: 10.1021/acs.jpca.6b06146.
  • Martínez-Huitle, C. A. ; Rodrigo, M. A. ; Sirés, I. ; Scialdone, O. Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review. Chem. Rev. 2015, 115 , 13362–13407. DOI: 10.1021/acs.chemrev.5b00361.
  • Chong, M. N. ; Jin, B. ; Chow, C. W. ; Saint, C. Recent Developments in Photocatalytic Water Treatment Technology: A Review. Water. Res. 2010, 44 , 2997–3027. DOI: 10.1016/j.watres.2010.02.039.
  • Herrmann, J. M. Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants. Catal. Today. 1999, 53 , 115–129. DOI: 10.1016/S0920-5861(99)00107-8.
  • Konstantinou, I. K. ; Albanis, T. A. TiO2-Assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution: Kinetic and Mechanistic Investigations: A Review. Appl. Catal. B: Environ. 2004, 49 , 1–14. DOI: 10.1016/j.apcatb.2003.11.010.
  • Chan, S. H. S. ; Yeong Wu, T. ; Juan, J. C. ; Teh, C. Y. Recent Developments of Metal Oxide Semiconductors as Photocatalysts in Advanced Oxidation Processes (AOPs) for Treatment of Dye Waste‐Water. J. Chem. Technol. Biotechnol. 2011, 86 , 1130–1158. DOI: 10.1002/jctb.2636.
  • Koutavarapu, R. ; Lee, G. ; Babu, B. ; Yoo, K. ; Shim, J. Visible-Light-Driven Photocatalytic Activity of Tiny ZnO Nanosheets Anchored on NaBiS2 Nanoribbons via Hydrothermal Synthesis. J. Mater. Sci: Mater. Electron. 2019, 30 , 10900–10911. DOI: 10.1007/s10854-019-01434-6.
  • Babu, B. ; Koutavarapu, R. ; Harish, V. V. N. ; Shim, J. ; Yoo, K. Novel in-Situ Synthesis of Au/SnO2 Quantum Dots for Enhanced Visible-Light-Driven Photocatalytic Applications. Ceram. Int. 2019, 45 , 5743–5750. DOI: 10.1016/j.ceramint.2018.12.040.
  • Babu, B. ; Mallikarjuna, K. ; Venkata Reddy, C. ; Park, J. Facile Synthesis of Cu@TiO2 Core Shell Nanowires for Efficient Photocatalysis. Mater. Lett. 2016, 176 , 265–269. DOI: 10.1016/j.matlet.2016.04.146.
  • Babu, B. ; Cho, M. ; Byon, C. ; Shim, J. One Pot Synthesis of Ag-SnO2 Quantum Dots for Highly Enhanced Sunlight-Driven Photocatalytic Activity. J. Alloy. Compd. 2018, 731 , 162–171. DOI: 10.1016/j.jallcom.2017.10.011.
  • Babu, B. ; Harish, V. V. N. ; Koutavarapu, R. ; Shim, J. ; Yoo, K. Enhanced Visible-Light-Active Photocatalytic Performance Using CdS Nanorods Decorated with Colloidal SnO2 Quantum Dots: Optimization of Core–Shell Nanostructure. J. Ind. Eng. Chem. 2019, 76 , 476–487. DOI: 10.1016/j.jiec.2019.04.015.
  • Chen, J. ; Liu, M. ; Zhang, L. ; Zhang, J. ; Jin, L. Application of Nano TiO2 towards Polluted Water Treatment Combined with Electro-Photochemical Method. Water. Res. 2003, 37 , 3815–3820. DOI: 10.1016/S0043-1354(03)00332-4.
  • Matos, J. ; Miralles-Cuevas, S. ; Ruíz-Delgado, A. ; Oller, I. ; Malato, S. Development of TiO2-C Photocatalysts for Solar Treatment of Polluted Water. Carbon. 2017, 122 , 361–373. DOI: 10.1016/j.carbon.2017.06.091.
  • Zheng, L. ; Zheng, Y. ; Chen, C. ; Zhan, Y. ; Lin, X. ; Zheng, Q. ; Wei, K. ; Zhu, J. Network Structured SnO2/ZnO Heterojunction Nanocatalyst with High Photocatalytic Activity. Inorg. Chem. 2009, 48 , 1819–1825. DOI: 10.1021/ic802293p.
  • Chakrabarti, S. ; Dutta, B. K. Photocatalytic Degradation of Model Textile Dyes in Wastewater Using ZnO as Semiconductor Catalyst. J. Hazard. Mater. 2004, 112 , 227–269. DOI: 10.1016/j.jhazmat.2004.05.013.
  • Navarro, S. ; Fenoll, J. ; Vela, N. ; Ruiz, E. ; Navarro, G. Photocatalytic Degradation of Eight Pesticides in Leaching Water by Use of ZnO under Natural Sunlight. J. Hazard. Mater. 2009, 172 , 1303–1310. DOI: 10.1016/j.jhazmat.2009.07.137.
  • Byrappa, K. ; Subramani, A. K. ; Ananda, S. ; Rai, K. L. ; Dinesh, R. ; Yoshimura, M. Photocatalytic Degradation of Rhodamine B Dye Using Hydrothermally Synthesized ZnO. Bull. Mater. Sci. 2006, 29 , 433–438. DOI: 10.1007/BF02914073.
  • Deng, D. ; Martin, S. T. ; Ramanathan, S. Synthesis and Characterization of One-Dimensional Flat ZnO Nanotower Arrays as High-Efficiency Adsorbents for the Photocatalytic Remediation of Water Pollutants. Nanoscale. 2010, 2 , 2685–2691. DOI: 10.1039/c0nr00537a.
  • Zhang, Y. ; Yang, X. ; He, N. ; Zhang, P. ; Ding, Y. ; Liu, D. ; Zou, Z. ; Gui, J. One-Step Hydrothermal Fabrication of Erythrocyte-Like ZnS/ZnO Composite with Superior Visible Light Photocatalytic Performance. Mate. Lett. 2018, 228 , 305–308. DOI: 10.1016/j.matlet.2018.05.121.
  • Zhang, F. ; Ding, Y. ; Zhang, Y. ; Zhang, X. ; Wang, Z. L. Piezo-Phototronic Effect Enhanced Visible and Ultraviolet Photodetection Using a ZnO–CdS Core–Shell Micro/Nanowire. ACS Nano. 2012, 6 , 9229–9236. DOI: 10.1021/nn3035765.
  • Zhu, H. ; Jiang, R. ; Fu, Y. ; Guan, Y. ; Yao, J. ; Xiao, L. ; Zeng, G. Effective Photocatalytic Decolorization of Methyl Orange Utilizing TiO2/ZnO/Chitosan Nanocomposite Films under Simulated Solar Irradiation. Desalination. 2012, 286 , 41–48. DOI: 10.1016/j.desal.2011.10.036.
  • Li, Y. ; Xie, W. ; Hu, X. ; Shen, G. ; Zhou, X. ; Xiang, Y. ; Zhao, X. ; Fang, P. Comparison of Dye Photodegradation and Its Coupling with Light-to-Electricity Conversion over TiO(2) and ZnO. Langmuir. 2010, 26 , 591–597. DOI: 10.1021/la902117c.
  • Liao, S. ; Donggen, H. ; Yu, D. ; Su, Y. ; Yuan, G. Preparation and Characterization of ZnO/TiO2, SO4 2−/ZnO/TiO2 Photocatalyst and Their Photocatalysis. J. Photochem. Photobiol. A. 2004, 168 , 7–13. DOI: 10.1016/j.jphotochem.2004.05.010.
  • Wang, Y. ; Zhu, S. ; Chen, X. ; Tang, Y. ; Jiang, Y. ; Peng, Z. ; Wang, H. One-Step Template-Free Fabrication of Mesoporous ZnO/TiO2 Hollow Microspheres with Enhanced Photocatalytic Activity. Appl. Surf. Sci. 2014, 307 , 263–271. DOI: 10.1016/j.apsusc.2014.04.023.
  • Raleaooa, P. V. ; Roodt, A. ; Mhlongo, G. G. ; Motaung, D. E. ; Kroon, R. E. ; Ntwaeaborwa, O. M. Luminescent, Magnetic and Optical Properties of ZnO-ZnS Nanocomposites. Phys. B. 2017, 507 , 13–20. DOI: 10.1016/j.physb.2016.11.031.
  • Li, W. ; Song, G. ; Xie, F. ; Chen, M. ; Zhao, Y. Preparation of Spherical ZnO/ZnS Core/Shell Particles and the Photocatalytic Activity for Methyl Orange. Mater. Lett. 2013, 96 , 221–223. DOI: 10.1016/j.matlet.2013.01.077.
  • Yu, L. ; Chen, W. ; Li, D. ; Wang, J. ; Shao, Y. ; He, M. ; Wang, P. ; Zheng, X. Inhibition of Photocorrosion and Photoactivity Enhancement for ZnO via Specific Hollow ZnO Core/ZnS Shell Structure. Appl. Cata. B: Environ. 2015, 164 , 453–461. DOI: 10.1016/j.apcatb.2014.09.055.
  • Ranjith, K. S. ; Senthamizhan, A. ; Balusamy, B. ; Uyar, T. Nanograined Surface Shell Wall Controlled ZnO–ZnS Core–Shell Nanofibers and Their Shell Wall Thickness Dependent Visible Photocatalyticproperties. Catal. Sci. Technol. 2017, 7 , 1167–1180. DOI: 10.1039/C6CY02556K.
  • Gao, X. ; Wang, J. ; Yu, J. ; Xu, H. Novel ZnO–ZnS Nanowire Arrays Withheterostructures and Enhanced Photocatalytic Properties. Cryst. Eng. Comm. 2015, 17 , 6328–6337. DOI: 10.1039/C5CE01078K.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.