112
Views
5
CrossRef citations to date
0
Altmetric
Articles

Phase behavior for 1-butyl-3-methylimidazolium tetrafluoroborate with sodium oxalate/succinate/formate aqueous two-phase systems at 298.15 and 308.15 K

, ORCID Icon, ORCID Icon &
Pages 67-74 | Received 31 May 2019, Accepted 20 Aug 2019, Published online: 13 Sep 2019

References

  • Albertsson, P. A. Aqueous Polymer-Phase Systems; Wiley: New York, 1986.
  • Zaslavsky, B. Y. Aqueous Two-Phase Partitioning, Physical Chemistry and Bioanalytical Applications ; Marcel Dekker: New York, 1995.
  • Gutowski, K. E. ; Broker, G. A. ; Willauer, H. D. ; Huddleston, J. G. ; Swatloski, R. P. ; Holbrey, J. D. ; Rogers, R. D. Controlling the Aqueous Miscibility of Ionic Liquids: Aqueous Biphasic Systems of Water-Miscible Ionic Liquids and Water-Structuring Salts for Recycle, Metathesis, and Separations. J. Am. Chem. Soc. 2003, 125 , 6632–6633. DOI: 10.1021/ja0351802.
  • Mai, N. L. ; Ahn, K. ; Koo, Y. M. Methods for Recovery of Ionic Liquids—A Review. Process. Biochem. 2014, 49 , 872–881. DOI: 10.1016/j.procbio.2014.01.016.
  • Gebbie, M. A. ; Smith, A. M. ; Dobbs, H. A. ; Lee, A. A. ; Warr, G. G. ; Banquy, X. ; Valtiner, M. ; Rutland, M. W. ; Israelachvili, J. N. ; Perkin, S. ; Atkin, R. Long-Range Electrostatic Forces in Ionic Liquids. Chem. Commun. 2017, 53 , 1214–1224. DOI: 10.1039/C6CC08820A.
  • Sánchez-Rangel, J. C. ; Jacobo-Velázquez, D. A. ; Benavides, J. Aqueous Two-Phase System Strategies for the Recovery and Partial Purification of Bioactive Low Molecular Weight Compounds; Springer: Cham, 2017.
  • Subbaiyan, N. K. ; Cambré, S. ; Parra-Vasquez, A. N. ; Haroz, E. ; Doorn, S. K. ; Duque, J. G. Surfactants' Key Role in Ionic Aqueous Two-Phase Separation of Carbon Nanotubes towards SmpleChirality Isolation, Meeting Abstracts. J. Electrochem. Soc. 2014, 30 , 1198–1198.
  • Zhou, B. ; Gou, G. ; Xu, S. ; Zhang, P. ; Liu, W. Extraction of Lysozyme by Hydroxyl-Functionalized Ionic Liquid Aqueous Two-Phase System. Asian J. Chem. 2015, 27 , 2759–2762. DOI: 10.14233/ajchem.2015.18020.
  • de Barros, D. P. C. ; Campos, S. R. R. ; Madeira, P. P. ; Azevedo, A. M. ; Baptista, A. M. ; Aires-Barros, M. R. Modeling the Partitioning of Amino Acids in Aqueous Two Phase Systems. J. Chromatogr. A. 2014, 1329 , 52–60. DOI: 10.1016/j.chroma.2013.12.015.
  • Sheikhian, L. ; Akhond, M. ; Absalan, G. ; Goltz, D. M. Dye-Affinity Partitioning of Acidic, Basic, and Neutral Proteins in Ionic Liquid-Based Aqueous Biphasic Systems. Sep. Sci. Technol. 2013, 48 , 2372–2380. DOI: 10.1080/01496395.2013.804086.
  • da SilveiraLeite, D. ; Carvalho, P. L. G. ; de Lemos, L. R. ; Mageste, A. B. ; Rodrigues, G. D. Hydrometallurgical Separation of Copper and Cobalt from Lithium-Ion Batteries Using Aqueous Two-Phase Systems. Hydrometallurgy 2017, 169 , 245–252.
  • Silva, F. A. E. ; Sintra, T. ; Ventura, S. P. ; Coutinho, J. A. Recovery of Paracetamol from Pharmaceutical Wastes. Sep. Purif. Technol. 2014, 122 , 315–322. DOI: 10.1016/j.seppur.2013.11.018.
  • Freire, M. G. ; Neves, C. M. ; Marrucho, I. M. ; Lopes, J. N. C. ; Rebelo, L. P. N. ; Coutinho, J. A. High-Performance Extraction of Alkaloids Using Aqueous Two-Phase Systems with Ionic Liquids. Green Chem. 2010, 12 , 1715–1718. DOI: 10.1039/c0gc00179a.
  • Li, Y. ; Lu, X. ; Huang, R. ; Zhu, Q. ; Xie, Y. Phase Behavior of Inorganic Salts Sodium Succinate and Ammonium Citrate in N-ethylpyridiniumTetrafluoroborateSolution at Different Temperatures. J. Chem. Eng. Data 2016, 61 , 2380–2390. DOI: 10.1021/acs.jced.5b01099.
  • Wu, B. ; Zhang, Y. M. ; Wang, H. P. Phase Behavior for Ternary Systems Composed of Ionic Liquid + Saccharides + Water. J. Phys. Chem. B 2008, 112 , 6426–6429. DOI: 10.1021/jp8005684.
  • Li, C. ; Han, J. ; Wang, Y. ; Yan, Y. ; Pan, J. ; Xu, X. ; Zhang, Z. Phase Behavior for the Aqueous Two-Phase Systems Containing the Ionic Liquid 1-Butyl-3-Methylimidazolium Tetrafluoroborate and Kosmotropic Salts. J. Chem. Eng. Data 2010, 55 , 1087–1092. DOI: 10.1021/je900533h.
  • Lv, H. ; Jiang, Z. ; Li, Y. ; Ren, B. Liquid–Liquid Equilibria of the Aqueous Two-Phase Systems of Ionic Liquid 1-Butyl-3-Methylimidazolium Tetrafluoroborate and Sodium Dihydrogen Phosphate/Disodium Hydrogen Phosphate or Their Mixtures. J. Chem. Eng. Data 2012, 57 , 2379–2386. DOI: 10.1021/je300195c.
  • das DoresAguiar, C. ; Machado, P. A. L. ; Alvarenga, B. G. ; Lemes, N. H. T. ; Virtuoso, L. S. Phase Behavior at Different Temperatures of Ionic Liquid Based Aqueous Two-Phase Systems Containing {[Bmim] BF 4+ Salt Sulfate (Zn 2+ or Ni 2+)+ Water}. J. Chem. Thermodyn. 2017, 108 , 105–117. DOI: 10.1016/j.jct.2017.01.008.
  • Li, C.-X. ; Han, J. ; Wang, Y. ; Yan, Y.-S. ; Xu, X.-H. ; Pan, J.-M. Extraction and Mechanism Investigation of Trace Roxithromycin in Real Water Samples by Use of Ionic Liquid–Salt Aqueous Two-Phase System. Anal Chim. Acta 2009, 653 , 178–183. DOI: 10.1016/j.aca.2009.09.011.
  • Zafarani-Moattar, M. T. ; Tolouei, S. Liquid–Liquid Equilibria of Aqueous Two-Phase Systems Containing Polyethylene Glycol 4000 and di-Potassium Tartrate, Potassium Sodium Tartrate, or di-Potassium Oxalate: Experiment and Correlation. CALPHAD 2008, 32 , 655–660. DOI: 10.1016/j.calphad.2008.09.006.
  • Perez, B. ; Malpiedi, L. P. ; Tubío, G. ; Nerli, B. ; de Alcântara Pessôa Filho, P. ; de Alcântara Pessôa Filho, P. Experimental Determination and Thermodynamic Modeling of Phase Equilibrium and Protein Partitioning in Aqueous Two-Phase Systems Containing Biodegradable Salts. J. Chem. Thermodyn. 2013, 56 , 136–143. DOI: 10.1016/j.jct.2012.07.017.
  • Lladosa, E. ; Silvério, S. C. ; Rodríguez, O. ; Teixeira, J. A. ; Macedo, E. A. (Liquid + Liquid) Equilibria of Polymer-Salt Aqueous Two-Phase Systems for Laccase Partitioning: UCON 50-HB-5100 with Potassium Citrate and (Sodium or Potassium) Formate at 23 °C . J. Chem. Thermodyn. 2012, 55 , 166–171. DOI: 10.1016/j.jct.2012.06.002.
  • Othmer, D. F. ; Tobias, P. E. Liquid-Liquid Extraction Data Toluene and Acetaldehyde Systems. Ind. Eng. Chem. 1942, 34 , 690−692. DOI: 10.1021/ie50390a011.
  • Merchuk, J. C. ; Andrews, B. A. ; Asenjo, J. A. AqueousTwo-Phase Systems for Protein Separation: Studies on Phase Inversion. J. Chromatogr. Biomed. Appl. 1998, 711 , 285−293. DOI: 10.1016/S0378-4347(97)00594-X.
  • Pirdashti, M. ; Movagharnejad, K. ; Rostami, A. A. ; Akbarpour, P. ; Ketabi, M. Liquid–Liquid Equilibrium Data, Viscosities, Densities, Conductivities, and Refractive Indexes of Aqueous Mixtures of Poly (Ethylene Glycol) with Trisodium Citrate at Different pH. J. Chem. Eng. Data 2015, 60 , 3423–3429. DOI: 10.1021/acs.jced.5b00705.
  • Iliuta, M. C. ; Thomsen, K. ; Rasmussen, P. Extended UNIQUAC Model for Correlation and Prediction of Vapour–Liquid–Solid Equilibria in Aqueous Salt Systems Containing Non-Electrolytes. Part A. Methanol–Water–Salt Systems. Chem. Eng. Sci. 2000, 55 , 2686.
  • Guan, Y. ; Lilley, T. H. ; Treffry, T. E. A New Excluded Volume Theory and Its Application to the Coexistence Curves of Aqueous Polymer Two Phase Systems. Macromolecules 1993, 26 , 3971–−3979. DOI: 10.1021/ma00067a037.
  • Kaul, A. Aqueous Two-Phase Systems: Methods and Protocols ; Springer: Berlin, 2000.
  • Barani, A. ; Pirdashti, M. ; Heidari, Z. ; Dragoi, E.-N. Influence of the Molecular Weight of Polymer, Temperature and pH on Phase Diagrams of Poly (Ethylene Glycol) + di-Potassium Tartrate Aqueous Two-Phase Systems. Fluid Phase Equilib. 2018, 459 , 1–9. DOI: 10.1016/j.fluid.2017.11.037.
  • Shahrokhi, B. ; Pirdashti, M. ; Mobalegholeslam, P. ; Rostami, A. A. Liquid-Liquid Equilibrium and Physical Properties of Aqueous Mixtures of Poly (Ethylene Glycol) with Zinc Sulfate at Different pH:Experiment, Correlation and Thermodynamic Modeling. J. Chem. Eng. Data 2017, 62 , 1106–1118. DOI: 10.1021/acs.jced.6b00950.
  • Ahmadi, F. ; Pirdashti, M. ; Rostami, A. A. Refractive Index and Liquid–Liquid Equilibrium Data of Poly Ethylene Glycol 3000+ Potassium Formate + Water at Different pH Values. Chin. J. Chem. Eng. 2018, 26 , 168–174. DOI: 10.1016/j.cjche.2017.07.003.
  • Wang, Y. ; Hu, S. P. ; Yan, Y. Y. ; Guan, W. S. Liquid-Liquid Equilibrium of Potassium/Sodium Carbonate + 2-Propanol/Ethanol + Water Aqueous Two-Phase Systems and Correlation at 298.15 K. CALPHAD 2009, 33 , 726–731. DOI: 10.1016/j.calphad.2009.09.006.
  • Poonsin, T. ; Simpson, B. K. ; Benjakul, S. ; Visessanguan, W. ; Klomklao, S. Albacore Tuna (Thunnus alalunga) Spleen Trypsin Partitioning in an Aqueous Two-Phase System and Its Hydrolytic Pattern on Pacific White Shrimp (Litopenaeus vannamei) Shells. Int. J. Food Prop. 2017, 20 , 1–14.
  • Marcus, Y. Thermodynamics of Solvation of Ions. Part 5.—Gibbs Free Energy of Hydration at 298.15 K. J. Chem. Soc. Faraday Trans. 1991, 87 , 2995–2999. DOI: 10.1039/FT9918702995.
  • Han, J. ; Yu, C. ; Wang, Y. ; Xie, X. ; Yan, Y. ; Yin, G. ; Guan, W. Liquid–Liquid Equilibria of Ionic Liquid 1-Butyl-3-Methylimidazolium Tetrafluoroborate and Sodium Citrate/Tartrate/Acetate Aqueous Two-Phase Systems at 298.15 K: Experiment and Correlation. Fluid Phase Equilib. 2010, 295 , 98–103. DOI: 10.1016/j.fluid.2010.03.044.
  • Wang, Y. ; Xu, X. ; Yan, Y. ; Han, J. ; Zhang, Z. Phase Behavior for the [Bmim] BF4Aqueous Two-Phase Systems Containing Ammonium Sulfate/Sodium Carbonate Salts at Different Temperatures: Experimental and Correlation. Thermochim. Acta 2010, 501 , 112–118. DOI: 10.1016/j.tca.2010.01.020.
  • Shahriari, S. ; Neves, C. M. S. S. ; Freire, M. G. ; Coutinho, J. A. P. Role of the Hofmeister Series in the Formation of Ionic-Liquid-Based Aqueous Biphasic Systems. J. Phys. Chem. B 2012, 116 , 7252–7258. DOI: 10.1021/jp300874u.
  • Ng, H. S. ; Tan, C. P. ; Mokhtar, M. N. ; Ibrahim, S. ; Ariff, A. ; Ooi, C. W. ; Ling, T. C. Recovery of Bacillus Cereus Cyclodextrin Glycosyltransferase and Recycling of Phase Components in an Aqueous Two-Phase System Using Thermo-Separating Polymer. Sep. Purif. Technol. 2012, 89 , 9–15. DOI: 10.1016/j.seppur.2011.12.028.
  • Li, Y. L. ; Zhang, M. S. ; Liu, Q. ; Su, H. ; Liu, Q. ; Guan, W. S. Liquid-Liquid Equilibria of Aqueous Two-Phase Systems of the Ionic Liquid Brominated N-Ethyl Pyridine and Sodium Dihydrogen Phosphate, Sodium Sulfate, Ammonium Citrate, and Potassium Tartrate at Different Temperatures: Experimental Determination and Correlation. Fluid Phase Equilib. 2013, 341 , 70−77. DOI: 10.1016/j.fluid.2012.12.019.
  • Li, Y. L. ; Zhang, M. S. ; Liu, Q. ; Su, H. Phase Behavior for the Aqueous Two-Phase Systems Containing the Ionic Liquid N-Butylpyridinium Tetrafluoroborate/1-Butyl-4-Methylpyridinium Tetrafluoroborate and Organic Salts (Sodium Tartrate/Ammonium Citrate/Trisodium Citrate) at Different Temperatures. J. Chem. Thermodyn. 2013, 66 , 80−87. DOI: 10.1016/j.jct.2013.06.011.
  • Wang, T. ; Zhang, D. ; Cai, Y. ; Han, J. ; Liu, Q. ; Wang, Y. Thermodynamic Equilibrium of Aqueous Two-Phase Systems Composed of [C4mim] BF4+ MgCl2/Na2WO4+ H2O at Different Temperatures. J. Chem. Eng. Data 2016, 61 , 1821–1828. DOI: 10.1021/acs.jced.5b01010.
  • Huddleston, J. G. ; Willauer, H. D. ; Rogers, R. D. Phase Diagram Data for Several PEG + Salt Aqueous Biphasic Systems at 25 °C. J. Chem. Eng. Data 2003, 48 , 1230–1236. DOI: 10.1021/je034042p.
  • Kiepe, J. ; Noll, O. ; Gmehling, J. Modified LIQUAC and Modified LIFACsA Further Development of Electrolyte Models for the Reliable Prediction of Phase Equilibria with Strong Electrolytes. Ind. Eng. Chem. Res. 2006, 45 , 2361–2373. DOI: 10.1021/ie0510122.
  • İNce, E. ; Lalikoglu, M. ; Constantinescu, D. Liquid Phase Equilibria of Water + Formic Acid + Dimethyl Carbonate Ternary System at Several Temperatures. J. Chem. Eng. Data 2014, 599 , 2781–2787. DOI: 10.1021/je500422t.
  • Santiago, R. S. ; Santos, G. R. ; Aznar, M. UNIQUAC Correlation of Liquid–Liquid Equilibrium in Systems Involving Ionic Liquids: The DFT–PCM Approach. Fluid Phase Equilib. 2009, 278 , 54–61. DOI: 10.1016/j.fluid.2009.01.002.
  • Lei, F. ; Wang, Q. ; Gong, X. ; Shen, B. ; Zhang, W. ; Han, Q. Solubilities of Succinic Acid in Acetic Acid + Water Mixtures and Acetic Acid + Cyclohexane Mixtures. J. Chem. Eng. Data 2014, 595 , 1714–1718. DOI: 10.1021/je500231c.
  • Khansary, M. A. ; Hallaji Sani, A. Using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) Methods for Determination of Interaction Parameters in Multicomponent Systems of Liquid–Liquid Equilibria. Fluid Phase Equilib. 2014, 365 , 141–145. DOI: 10.1016/j.fluid.2014.01.016.
  • Pirahmadi, F. ; Dehghani, M. R. ; Behzadi, B. ; Seyedi, S. M. ; Rabiee, H. Experimental and Theoretical Study on Liquid–Liquid Equilibrium of 1-Butanol + Water + NaNO3 at 25 and 35°C. Fluid Phase Equilib. 2012, 325, 15. DOI: 10.1016/j.fluid.2012.03.026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.