175
Views
4
CrossRef citations to date
0
Altmetric
Research Article

An in situ displacement method to evaluate demulsification performance of demulsifiers

, , , , &
Pages 686-692 | Received 31 Jul 2019, Accepted 08 Dec 2019, Published online: 07 Jan 2020

References

  • Zhang, L. F.; Ying, H.; Yan, S.; Zhan, N. N.; Guo, Y. S.; Fang, W. J. Hyperbranched Poly(Amido Amine) as an Effective Demulsifier for Oil-in-Water Emulsions of Microdroplets. Fuel 2018, 211, 197–205. DOI: 10.1016/j.fuel.2017.09.066.
  • Al-Sabagh, A. M.; Kandile, N. G.; El-Din, M. R. N. Functions of Demulsifiers in the Petroleum Industry. Sep. Sci. Technol. 2011, 46, 1144–1163. DOI: 10.1080/01496395.2010.550595.
  • Roostaie, T.; Farsi, M.; Rahimpour, M. R.; Biniaz, P. Performance of Biodegradable Cellulose Based Agents for Demulsification of Crude Oil: Dehydration Capacity and Rate. Sep. Purif. Technol. 2017, 179, 291–296. DOI: 10.1016/j.seppur.2017.01.036.
  • Pradilla, D.; Ramirez, J.; Zanetti, F.; Alvarez, O. Demulsifier Performance and Dehydration Mechanisms in Colombian Heavy Crude Oil Emulsions. Energy Fuels 2017, 31, 10369–10377. DOI: 10.1021/acs.energyfuels.7b01021.
  • Souza, A. V.; Mendes, M. T.; Souza, S. T. S.; Palermo, L. C. M.; Oliveira, P. F.; Mansur, C. R. E. Synthesis of Additives Based on Polyethylenimine Modified with Non-Ionic Surfactants for Application in Phase Separation of Water-in-Oil Emulsions. Energy Fuels 2017, 31, 10612–10619. DOI: 10.1021/acs.energyfuels.7b01730.
  • Shehzad, F.; Hussein, I. A.; Kamal, M. S.; Ahmad, W.; Sultan, A. S.; Nasser, M. S. Polymeric Surfactants and Emerging Alternatives Used in the Demulsification of Produced Water: A Review. Polym. Rev. 2018, 58, 63–101. DOI: 10.1080/15583724.2017.1340308.
  • Adilbekova, A. O.; Omarova, K. I.; Karakulova, A.; Musabekov, K. B. Nonionic Surfactants Based on Polyoxyalkylated Copolymers Used as Demulsifying Agents. Colloid Surf. A-Physicochem. Eng. Asp. 2015, 480, 433–438. DOI: 10.1016/j.colsurfa.2014.11.004.
  • Feng, X. H.; Behles, J. A. Understanding the Demulsification of Water-in-Diluted Bitumen Froth Emulsions. Energy Fuels 2015, 29, 4616–4623. DOI: 10.1021/acs.energyfuels.5b00798.
  • Luo, X. M.; Gong, H. Y.; Cao, J. H.; Yin, H. R.; Yan, Y. P.; He, L. M. Enhanced Separation of Water-in-Oil Emulsions Using Ultrasonic Standing Waves. Chem. Eng. Sci. 2019, 203, 285–292. DOI: 10.1016/j.ces.2019.04.002.
  • Wang, F.; Fang, S. W.; Duan, M.; Xiong, Y.; Wang, X. J. Synthesis of a Novel Demulsifier by One-Pot Synthesis Using Two PEO-PPO Demulsifiers as Materials and the Study of Its Demulsification Performance. Sep. Sci. Technol. 2019, 54, 1233–1240. DOI: 10.1080/01496395.2018.1530263.
  • Ren, B. P.; Kang, Y. Aggregation of Oil Droplets and Demulsification Performance of Oil-in-Water Emulsion in Bidirectional Pulsed Electric Field. Sep. Purif. Technol. 2019, 211, 958–965. DOI: 10.1016/j.seppur.2018.10.053.
  • Nikkhah, M.; Tohidian, T.; Rahimpour, M. R.; Jahanmiri, A. Efficient Demulsification of Water-in-Oil Emulsion by a Novel Nano-Titania Modified Chemical Demulsifier. Chem. Eng. Res. Des. 2015, 94, 164–172. DOI: 10.1016/j.cherd.2014.07.021.
  • Al-Sabagh, A. M.; Hassan, M. E.; Desouky, S. E. M.; Nasser, N. M.; Elsharaky, E. A.; Abdelhamid, M. M. Demulsification of W/O Emulsion at Petroleum Field and Reservoir Conditions Using Some Demulsifiers Based on Polyethylene and Propylene Oxides. Egypt. J. Petrol. 2016, 25, 585–595. DOI: 10.1016/j.ejpe.2016.05.008.
  • Wang, C. J.; Fang, S. W.; Duan, M.; Xiong, Y.; Ma, Y. Z.; Chen, W. J. Synthesis and Evaluation of Demulsifiers with Polyethyleneimine as Accepter for Treating Crude Oil Emulsions. Polym. Adv. Technol. 2015, 26, 442–448. DOI: 10.1002/pat.3471.
  • Fang, S.; Zhu, Y.; Chen, B.; Xiong, Y.; Duan, M. Magnetic Demulsifier Prepared by Using One-Pot Reaction and Its Performance for Treating Oily Wastewater. Can. J. Chem. Eng. 2016, 94, 2298–2302. DOI: 10.1002/cjce.22625.
  • Guzman-Lucero, D.; Flores, P.; Rojo, T.; Martinez-Palou, R. Ionic Liquids as Demulsifiers of Water-in-Crude Oil Emulsions: Study of the Microwave Effect. Energy Fuels 2010, 24, 3610–3615. DOI: 10.1021/ef100232f.
  • Peña, A. A.; Hirasaki, G. J.; Miller, C. A. Chemically Induced Destabilization of Water-in-Crude Oil Emulsions. Ind. Eng. Chem. Res. 2005, 44, 1139–1149. DOI: 10.1021/ie049666i.
  • Feng, X. H.; Xu, Z. H.; Masliyah, J. Biodegradable Polymer for Demulsification of Water-in-Bitumen Emulsions. Energy Fuels 2009, 23, 451–456. DOI: 10.1021/ef800825n.
  • Pensini, E.; Harbottle, D.; Yang, F.; Tchoukov, P.; Li, Z. F.; Kailey, I.; Behles, J.; Masliyah, J.; Xu, Z. H. Demulsification Mechanism of Asphaltene-Stabilized Water-in-Oil Emulsions by a Polymeric Ethylene Oxide Propylene Oxide Demulsifier. Energy Fuels 2014, 28, 6760–6771. DOI: 10.1021/ef501387k.
  • Hou, J.; Feng, X. H.; Masliyah, J.; Xu, Z. H. Understanding Interfacial Behavior of Ethylcellulose at the Water-Diluted Bitumen Interface. Energy Fuels 2012, 26, 1740–1745. DOI: 10.1021/ef201722y.
  • Fan, Y. R.; Simon, S.; Sjoblom, J. Interfacial Shear Rheology of Asphaltenes at Oil-Water Interface and Its Relation to Emulsion Stability: Influence of Concentration, Solvent Aromaticity and Nonionic Surfactant. Colloid Surf. A-Physicochem. Eng. Asp. 2010, 366, 120–128. DOI: 10.1016/j.colsurfa.2010.05.034.
  • Kim, Y. H.; Wasan, D. T. Effect of Demulsifier Partitioning on the Destabilization of Water-in-Oil Emulsions. Ind. Eng. Chem. Res. 1996, 35, 1141–1149. DOI: 10.1021/ie950372u.
  • Ferri, J. K.; Gorevski, N.; Kotsmar, C.; Leser, M. E.; Miller, R. Desorption Kinetics of Surfactants at Fluid Interfaces by Novel Coaxial Capillary Pendant Drop Experiments. Colloids Surfaces A-Physicochem. Eng. Asp. 2008, 319, 13–20. DOI: 10.1016/j.colsurfa.2007.07.037.
  • Pradilla, D.; Simon, S.; Sjoblom, J. Mixed Interfaces of Asphaltenes and Model Demulsifiers Part I: Adsorption and Desorption of Single Components. Colloid Surf. A-Physicochem. Eng. Asp. 2015, 466, 45–56. DOI: 10.1016/j.colsurfa.2014.10.051.
  • Flory, P. Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, 1953.
  • Yu, H.; Wang, Z. H.; Wu, R.; Chen, X. F.; Chan, T. W. D. Water-Dispersible pH/Thermo Dual-Responsive Microporous Polymeric Microspheres as Adsorbent for Dispersive Solid-Phase Extraction of Fluoroquinolones from Environmental Water Samples and Food Samples. J. Chromatogr. A. 2019, 1601, 27–34. DOI: 10.1016/j.chroma.2019.05.004.
  • Cozzi, F.; Cinquini, M.; Annuziata, R.; Siegel, J. S. Dominance of Polar/.pi. over Charge-Transfer Effects in Stacked Phenyl Interactions. J. Am. Chem. Soc. 1993, 115, 5330–5331. DOI: 10.1021/ja00065a069.
  • Martinez, C. R.; Iverson, B. L. Rethinking the Term “pi-Stacking. Chem. Sci. 2012, 3, 2191–2201. DOI: 10.1039/c2sc20045g.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.