232
Views
8
CrossRef citations to date
0
Altmetric
Research Article

The mechanical and flame retardant characteristics of lignin-based phenolic foams reinforced with MWCNTs by in-situ polymerization

, , , , &
Pages 1042-1051 | Received 05 Nov 2019, Accepted 25 Jan 2020, Published online: 04 Mar 2020

References

  • Zhang, N.; Hu, L.; Guo, Y.; Bo, C.; Jia, P.; Zhang, B.; Zhou, Y. Mechanical Property of Lignin-Modified Phenolic Foam Enhanced by Whisker Silicon. J. Disper. Sci. Technol 2019, 41, 348–354. DOI: 10.1080/01932691.2019.1578662.
  • Liu, J.; Li, X.; Zhou, C. Mechanical and Thermal Properties of Modified Red Mud‐Reinforced Phenolic Foams. Polym. Int. 2018, 67, 528–534. DOI: 10.1002/pi.5540.
  • Bo, C.; Hu, L.; Chen, Y.; Yang, X.; Zhang, M.; Zhou, Y. Synthesis of a Novel Cardanol-Based Compound and Environmentally Sustainable Production of Phenolic Foam. J. Mater. Sci. 2018, 53, 10784–10797. DOI: 10.1007/s10853-018-2362-9.
  • Ma, Y.; Gong, X.; Xie, B.; Geng, X.; Jia, P. Synthesis and Characterization of DOPO-g-CNSL and Its Effect on the Properties of Phenolic Foams. J. Renew. Mater. 2019, 10, 1037–1046. DOI: 10.32604/jrm.2019.07454.
  • Lin, C.; Lee, H.; Chen, J. Preparation and Properties of bisphenol-F Based Boron-Phenolic Resin/Modified Silicon Nitride Composites and Their Usage as Binders for Grinding Wheels. Appl. Surf. Sci 2015, 330, 1–9. DOI: 10.1016/j.apsusc.2014.12.193.
  • Guo, Y.; Hu, L.; Jia, P.; Zhang, B.; Zhou, Y. Enhancement of Thermal Stability and Chemical Reactivity of Phenolic Resin Ameliorated by nanoSiO2. Korean J. Chem. Eng. 2018, 35, 298–302. DOI: 10.1007/s11814-017-0240-9.
  • Yuan, J.; Zhang, Y.; Wang, Z. Phenolic Foams Toughened with Crosslinked Poly(n-Butyl Acrylate)/Silica Core-Shell Nanocomposite Particles. J. Appl. Polym. Sci. 2015, 132, n/a–n/a. DOI: 10.1002/app.42590.
  • Zhu, Y.; Wang, Z. Phenolic Foams, Modifed by Nano‐Metallic Oxides, Improved in Mechanical Strengths and Friability. Iran. Polym. J. 2016, 25, 579–587. DOI: 10.1007/s13726-016-0447-3.
  • Saz-Orozco, B. D.; Alonso, M. V.; Oliet, M.; Domínguez, J. C.; Rodriguez, F. Mechanical, Thermal and Morphological Characterization of Cellulose Fiber-Reinforced Phenolic Foams. Compos. Part. B-Eng. 2015, 75, 367–372. DOI: 10.1016/j.compositesb.2015.01.049.
  • Zhou, J.; Yao, Z.; Chen, Y.; Wei, D.; Wu, Y. Thermomechanical Analyses of Phenolic Foam Reinforced with Glass Fiber Mat. Mater. Des. 2013, 51, 131–135. DOI: 10.1016/j.matdes.2013.04.030.
  • Song, S. A.; Chung, Y. S.; Kim, S. S. The Mechanical and Thermal Characteristics of Phenolic Foams Reinforced with Carbon Nanoparticles. Compos. Sci. Technol 2014, 103, 85–93. DOI: 10.1016/j.compscitech.2014.08.013.
  • Luo, X.; Yu, K.; Qian, K. Morphologies and Compression Performance of Graphene Oxide/SiO2 Modified Phenolic Foam. High. Perform. Polym 2018, 30, 803–811. DOI: 10.1177/0954008317731136.
  • Wang, H.; Wang, F.; Zheng, K.; Guo, L.; Chen, L.; Zhang, X.; Tian, X. Preparation and Characterization of Phenolic Composites Reinforced by the Attapulgite Nanoparticles. J. Macromol. Sci. A. 2015, 52, 210–217. DOI: 10.1080/10601325.2015.996943.
  • Li, S.; Chen, F.; Zhang, B.; Luo, Z.; Li, H.; Zhao, T. Structure and Improved Thermal Stability of Phenolic Resin Containing Silicon and Boron Elements. Polym. Degrad. Stabil 2016, 133, 321–329. DOI: 10.1016/j.polymdegradstab.2016.07.020.
  • Liu, L.; Fu, M.; Wang, Z. Synthesis of Boron-Containing Toughening Agents and Their Application in Phenolic Foams. Ind. Eng. Chem. Res. 2015, 54, 1962–1970. DOI: 10.1021/ie504851y.
  • Chandran, M. S.; Sunitha, K.; Gayathri, D. S.; Soumyamol, P. B.; Mathew, D. Boron-Containing Phenolic–Siloxane Hybrid Polymers through Facile Click Chemistry Route. J. Mater. Sci. 2018, 53, 2497–2510. DOI: 10.1007/s10853-017-1737-7.
  • Yang, M.; Zhu, X.; Ren, G.; Men, X.; Guo, F.; Zhang, Z.; Liu, W. Hybrid Fabric/Molybdic Acid-Modified Phenolic Resin Composites with Improved Antiwear Properties. Tribol. T. 2016, 59, 244–251. DOI: 10.1080/10402004.2015.1065025.
  • Li, X.; Wang, Z.; Wu, L.; Tsai, T. One-Step in Situ Synthesis of a Novel a-Zirconium Phosphate/Graphene Oxide Hybrid and Its Application in Phenolic Foam with Enhanced Mechanical Strength, Flame Retardancy and Thermal Stability. Rsc Adv. 2016, 6, 74903–74912. DOI: 10.1039/C6RA12208F.
  • Hu, L.; Zhou, Y.; Liu, R.; Zhang, M. Phenolic Foam from Oxidatively Degradated Lignosulphonate. Amr. 2012, 581, 238–241. DOI: 10.4028/www.scientific.net/AMR.581-582.238.
  • Hu, L.; Zhou, Y.; Liu, R.; Zhang, M.; Yang, X. Synthesis of Foaming Resol Resin Modified with Oxidatively Degraded Lignosulfonate. Ind. Crop. Prod 2013, 44, 364–366. DOI: 10.1016/j.indcrop.2012.11.034.
  • Li, B.; Wang, Y.; Mahmood, N.; Yuan, Z.; Schmidt, J.; Xu, C. C. Preparation of Bio-Based Phenol Formaldehyde Foams Using Depolymerized Hydrolysis Lignin. Ind. Crop. Prod 2017, 97, 409–416. DOI: 10.1016/j.indcrop.2016.12.063.
  • Liang, B.; Li, X.; Hu, L.; Bo, C.; Zhou, J.; Zhou, Y. Foaming Resol Resin Modified with Polyhydroxylated Cardanol and Its Application to Phenolic Foams. Ind. Crop. Prod 2016, 80, 194–196. DOI: 10.1016/j.indcrop.2015.11.087.
  • Bo, C.; Wei, S.; Hu, L.; Jia, P.; Liang, B.; Zhou, J.; Zhou, Y. Synthesis of a Cardanol-Based Phosphorus-Containing Polyurethane Prepolymer and Its Application in Phenolic Foams. Rsc Adv. 2016, 6, 62999–63005. DOI: 10.1039/C6RA08249A.
  • Jing, S.; Li, T.; Li, X.; Xu, Q.; Hu, J.; Li, R. Phenolic Foams Modified by Cardanol through Bisphenol Modification. J. Appl. Polym. Sci. 2014, 131, n/a–39942. DOI: 10.1002/app.39942.
  • Tondi, G.; Pizzi, A. Tannin-Based Rigid Foams: Characterization and Modification. Ind. Crop. Prod 2009, 29, 356–363. DOI: 10.1016/j.indcrop.2008.07.003.
  • Tondi, G.; Zhao, W.; Pizzi, A.; Du, G.; Fierro, V.; Celzard, A. Tannin-Based Rigid Foams: A Survey of Chemical and Physical Properties. Celzard, Bioresource Technol. 2009, 100, 5162–5169. DOI: 10.1016/j.biortech.2009.05.055.
  • Zhang, Y.; Liao, J.; Fang, X.; Bai, F.; Qiao, K.; Wang, L. Renewable High-Performance Polyurethane Bioplastics Derived from Lignin–Poly (ε-Caprolactone. ). Acs Sustainable Chem. Eng. 2017, 5, 4276–4284. DOI: 10.1021/acssuschemeng.7b00288.
  • Ren, W.; Pan, X.; Wang, G.; Cheng, W.; Liu, Y. Dodecylated Lignin-g-PLA for Effective Toughening of PLA. Green Chem. 2016, 18, 5008–5014. DOI: 10.1039/C6GC01341D.
  • Mittal, G.; Dhand, V.; Rhee, K. Y.; Park, S.; Lee, W. R. A Review on Carbon Nanotubes and Graphene as Fillers in Reinforced Polymer Nanocomposites. J. Ind. Eng. Chem 2015, 21, 11–25. DOI: 10.1016/j.jiec.2014.03.022.
  • Arash, B.; Wang, Q.; Varadan, V. K. Mechanical Properties of Carbon Nanotube/Polymer Composites. Sci. Rep. 2014, 4, 6479. DOI: 10.1038/srep06479.
  • Li, Y.; Wang, S.; Wang, Q.; Xing, M. Enhancement of Fracture Properties of Polymer Composites Reinforced by Carbon Nanotubes: A Molecular Dynamics Study. Carbon 2018, 129, 504–509. DOI: 10.1016/j.carbon.2017.12.029.
  • Wu, G.; Ma, L.; Liu, L.; Wang, Y.; Xie, F.; Zhong, Z.; Zhao, M.; Jiang, B.; Huang, Y. Interface Enhancement of Carbon Fiber Reinforced Methylphenylsilicone Resin Composites Modified with Silanized Carbon Nanotubes. Mater. Des. 2016, 89, 1343–1349. DOI: 10.1016/j.matdes.2015.10.016.
  • Quan, D.; Labarg, J.; Urdániz; Ivankovic, A. Enhancing mode-I and mode-II Fracture Toughness of Epoxy and Carbon Fibre Reinforced Epoxy Composites Using Multi-Walled Carbon Nanotubes. Mater. Des 2018, 143, 81–92. DOI: 10.1016/j.matdes.2018.01.051.
  • Huang, J.; Li, N.; Xiao, L.; Liu, H.; Wang, Y.; Chen, J.; Nie, X.; Zhu, Y. Fabrication of a Highly Tough, Strong, and Stiff Carbon Nanotube/Epoxy Conductive Composite with an Ultralow Percolation Threshold via Self-Assembly. J. Mater. Chem. A 2019, 7, 15731–15740. DOI: 10.1039/C9TA04256C.
  • Baferani, A. H.; Katbab, A. A.; Ohadi, A. R. The Role of Sonication Time upon Acoustic Wave Absorption Efficiency, Microstructure, and Viscoelastic Behavior of Flexible Polyurethane/CNT Nanocomposite Foam. Eur. Polym. J 2017, 90, 383–391. DOI: 10.1016/j.eurpolymj.2017.03.042.
  • Zeng, Z.; Jin, H.; Chen, M.; Li, W.; Zhou, L.; Zhang, Z. Lightweight and Anisotropic Porous MWCNT/WPU Composites for Ultrahigh Performance Electromagnetic Interference Shielding. Adv. Funct. Mater. 2016, 26, 303–310. DOI: 10.1002/adfm.201503579.
  • Song, F.; Li, Z.; Jia, P.; Zhang, M.; Bo, C.; Feng, G.; Hu, L.; Zhou, Y. Tunable “Soft and Stiff”, Self-Healing, Recyclable, Thermadapt Shape Memory Biomass Polymers Based on Multiple Hydrogen Bonds and Dynamic Imine Bonds. J. Mater. Chem. A 2019, 7, 13400–13410. DOI: 10.1039/C9TA03872H.
  • Zhu, H.; Wang, X.; Liang, J.; Lv, H.; Tong, H.; Ma, L.; Hu, Y.; Zhu, G.; Zhang, T.; Tie, Z.; et al. Versatile Electronic Skins for Motion Detection of Joints Enabled by Aligned Few-Walled Carbon Nanotubes in Flexible Polymer Composites. Adv. Funct. Mater. 2017, 27, 1606604. DOI: 10.1002/adfm.201606604.
  • Wang, H.; Zheng, K.; Zhang, X.; Ding, X.; Zhang, Z.; Bao, C.; Guo, L.; Chen, L.; Tian, X. 3D Network Porous Polymeric Composites with Outstanding Electromagnetic Interference Shielding. Compos. Sci. Technol. 2016, 125, 22–29. DOI: 10.1016/j.compscitech.2016.01.007.
  • Wu, D.; Lv, Q.; Feng, S.; Chen, J.; Chen, Y.; Qiu, Y.; Yao, X. Polylactide Composite Foams Containing Carbon Nanotubes and Carbon Black: Synergistic Effect of Filler on Electrical Conductivity. Carbon 2015, 95, 380–387. DOI: 10.1016/j.carbon.2015.08.062.
  • Lagel, M. C.; Pizzi, A.; Giovando, S.; Celzard, A. Development and Characterisation of Phenolic Foams with Phenol-Formaldehyde-Chestnut Tannins Resin. J. Renew. Mater. 2014, 2, 220–229. DOI: 10.7569/JRM.2014.634113.
  • Li, Q.; Chen, L.; Li, X.; Zhang, J.; Zhang, X.; Zheng, K.; Fang, F.; Zhou, H.; Tian, X. Effect of Multi-Walled Carbon Nanotubes on Mechanical, Thermal and Electrical Properties of Phenolic Foam via in-Situ Polymerization. Compos. Part. A-Appl. 2016, 82, 214–225. DOI: 10.1016/j.compositesa.2015.11.014.
  • Yang, Z.; Yuan, L.; Gu, Y.; Li, M.; Sun, Z.; Zhang, Z. Improvement in Mechanical and Thermal Properties of Phenolic Foam Reinforced with Multiwalled Carbon Nanotubes. J. Appl. Polym. Sci. 2013, 130, 1479–1488. DOI: 10.1002/app.39326.
  • Liu, Y.; Gao, L.; Sun, J. Noncovalent Functionalization of Carbon Nanotubes with Sodium Lignosulfonate and Subsequent Quantum Dot Decoration. J. Phys. Chem. C 2007, 111, 1223–1229. DOI: 10.1021/jp066018z.
  • Song, F.; Jia, P.; Xiao, Y.; Bo, C.; Hu, L.; Zhou, Y. Study on Toughening Phenolic Foams in Phosphorus-Containing Tung Oil-Based Derivatives. J. Renew. Mater 2019, 7, 1011–1021. DOI: 10.32604/jrm.2019.8044.
  • Yonghong, D.; Jinghong, Y.; Liang, G. Surface Carboxylation of Multi-Walled Carbon Nanotubes and Its Properties of Flame Retardant ABS. Eng. Plast. Appl. 2019, 47, 1–6. DOI: 10.3969/j.issn.1001-3539.2019.03.001.
  • Bo, C.; Yang, X.; Hu, L.; Zhang, M.; Jia, P.; Zhou, Y. Enhancement of Flame-Retardant and Mechanical Performance of Phenolic Foam with the Incorporation of Cardanol-Based Siloxane. Polym. Compos. 2019, 40, 2539–2547. DOI: 10.1002/pc.25285.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.