708
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Optimization of chitosan-coated W/O/W multiple emulsion stabilized with Span 80 and Tween 80 using Box–Behnken design

ORCID Icon, , , & ORCID Icon
Pages 1566-1578 | Received 28 Jan 2020, Accepted 26 Apr 2020, Published online: 16 Jun 2020

References

  • Cleary, P. A.; Orchard, T. J.; Genuth, S.; Wong, N. D.; Detrano, R.; Backlund, J.-Y. C.; Zinman, B.; Jacobson, A.; Sun, W.; Lachin, J. M.; et al. Intensive Diabetes Treatment and Cardiovascular Disease in Patients with Type 1 Diabetes. N. Engl. J. Med. 2006, 55, 3556–2653. DOI: 10.1056/NEJMoa052187.
  • Sood, A.; Panchagnula, R. Peroral Route: An Opportunity for Protein and Peptide Drug Delivery. Chem. Rev. 2001, 101, 3275–3303. DOI: 10.1021/cr000700m.
  • Goyal, A. K.; Garg, T.; Bhandari, S.; Rath, G. Chapter 22 – Advancement in Pulmonary Drug Delivery Systems for Treatment of Tuberculosis. In Nanostructures for Drug Delivery. Micro and Nano Technologies; Andronescu, E., Grumezescu, A. M., Eds.; Elsevier: Amsterdam, 2017; pp 669–695.
  • Hino, T.; Shimabayashi, S.; Tanaka, M.; Nakano, M.; Okochi, H. Improvement of Encapsulation Efficiency of Water-in-Oil-in-Water Emulsion with Hypertonic Inner Aqueous Phase. J. Microencapsul. 2001, 18, 19–28. DOI: 10.1080/026520401750038575.
  • Jena, A. K.; Nayak, A. K.; De, A.; Mitra, D.; Samanta, A. Development of Lamivudine Containing Multiple Emulsions Stabilized by Gum Odina. Future J. Pharm. Sci. 2018, 4, 71–79. DOI: 10.1016/j.fjps.2017.10.002.
  • Morais, J. M.; Santos, O. D.; Friberg, S. E. Some Fundamentals of the One-Step Formation of Double Emulsions. J. Dispers. Sci. Technol. 2010, 31, 1019–1026. DOI: 10.1080/01932690903224656.
  • Schuch, A.; Wrenger, J.; Schuchmann, H. P. Production of W/O/W Double Emulsions. Part II: Influence of Emulsification Device on Release of Water by Coalescence. Colloids Surf. Physicochem. Eng. Asp. 2014, 461, 344–351. DOI: 10.1016/j.colsurfa.2013.11.044.
  • Sharma, S.; Shukla, P.; Misra, A.; Mishra, P. R. Chapter 8 – Interfacial and Colloidal Properties of Emulsified Systems: Pharmaceutical and Biological Perspective. In Colloid and Interface Science in Pharmaceutical Research and Development; Ohshima, H., Makino, K., Eds.; Elsevier: Amsterdam, 2014; pp 149–172.
  • Kim, S.; Kim, K.; Choi, S. Q. Controllable One-Step Double Emulsion Formation via Phase Inversion. Soft Matter. 2018, 14, 1094–1099. DOI: 10.1039/c7sm02134h.
  • Perez-Moral, N.; Watt, S.; Wilde, P. Comparative Study of the Stability of Multiple Emulsions Containing a Gelled or Aqueous Internal Phase. Food Hydrocoll. 2014, 42, 215–222. DOI: 10.1016/j.foodhyd.2014.05.023.
  • Carlotti, M. E.; Gallarate, M.; Sapino, S.; Ugazio, E.; Morel, S. W/O/W Multiple Emulsions for Dermatological and Cosmetic Use, Obtained with Ethylene Oxide Free Emulsifiers. J. Dispers. Sci. Technol. 2005, 26, 183–192. DOI: 10.1081/DIS-200045584.
  • Wen, J.; Zhang, Q.; Zhu, D.; Zhang, W. Performance Study on Particle Size Variables for Nano Multiple Emulsions. J. Dispers. Sci. Technol. 2017, 38, 801–806. DOI: 10.1080/01932691.2016.1198704.
  • Silva-Cunha, A.; Grossiord, J. L.; Puisieux, F.; Seiller, M. W/O/W Multiple Emulsions of Insulin Containing a Protease Inhibitor and an Absorption Enhancer: Preparation, Characterization and Determination of Stability towards Proteases In Vitro. Int. J. Pharm. 1997, 158, 79–89. DOI: 10.1016/S0378-5173(97)00249-4.
  • Singh, S.; Singh, R.; Vyas, S. P. Multiple Emulsion-Based Systems Carrying Insulin: Development and Characterization. J. Microencapsul. 1995, 12, 609–615. DOI: 10.3109/02652049509006791.
  • Čilek, A.; Čelebi, N.; Tirnaksiz, F. Lecithin-Based Microemulsion of a Peptide for Oral Administration: Preparation, Characterization, and Physical Stability of the Formulation. Drug Deliv. 2006, 13, 19–24. DOI: 10.1080/10717540500313109.
  • Dogru, S. T.; Calis, S.; Öner, F. Oral Multiple W/O/W Emulsion Formulation of a Peptide Salmon Calcitonin: In Vitro-in Vivo Evaluation. J. Clin. Pharm. Ther. 2000, 25, 435–443. DOI: 10.1046/j.1365-2710.2000.00306.x.
  • Sawant, K. K.; Mundada, V. P.; Patel, V. J. Development and Optimization of W/O/W Multiple Emulsion of Lisinopril Dihydrate Using Plackett Burman and Box-Behnken Designs | OMICS International. https://www.omicsonline.org/open-access/development-and-optimization-of-wow-multiple-emulsion-of-lisinoprildihydrate-using-plackett-burman-and-boxbehnken-designs-2157-7439-1000422.php?aid=85555 (accessed Apr 8, 2019).
  • Yildirim, M.; Sumnu, G.; Sahin, S. The Effects of Emulsifier Type, Phase Ratio, and Homogenization Methods on Stability of the Double Emulsion. J. Dispers. Sci. Technol. 2017, 38, 807–814. DOI: 10.1080/01932691.2016.1201768.
  • Damodaran, S. Protein Stabilization of Emulsions and Foams. J. Food Sci. 2006, 70, R54–R66. DOI: 10.1111/j.1365-2621.2005.tb07150.x.
  • McClements, D. J. Advances in Fabrication of Emulsions with Enhanced Functionality Using Structural Design Principles. Curr. Opin. Colloid Interface Sci. 2012, 17, 235–245. DOI: 10.1016/j.cocis.2012.06.002.
  • Li, X.; Qi, J.; Xie, Y.; Zhang, X.; Hu, S.; Xu, Y.; Lu, Y.; Wu, W. Nanoemulsions Coated with Alginate/Chitosan as Oral Insulin Delivery Systems: Preparation, Characterization, and Hypoglycemic Effect in Rats. Int. J. Nanomed. 2013, 8, 23–32. DOI: 10.2147/IJN.S38507.
  • Harnsilawat, T.; Pongsawatmanit, R.; McClements, D. J. Characterization of β-Lactoglobulin–Sodium Alginate Interactions in Aqueous Solutions: A Calorimetry, Light Scattering, Electrophoretic Mobility and Solubility Study. Food Hydrocoll. 2006, 20, 577–585. DOI: 10.1016/j.foodhyd.2005.05.005.
  • Kyzioł, A.; Mazgała, A.; Michna, J.; Regiel-Futyra, A.; Sebastian, V. Preparation and Characterization of Alginate/Chitosan Formulations for Ciprofloxacin-Controlled Delivery. J. Biomater. Appl. 2017, 32, 162–174. DOI: 10.1177/0885328217714352.
  • Wang, G.; Wang, X.; Huang, L. Feasibility of Chitosan-Alginate (Chi-Alg) Hydrogel Used as Scaffold for Neural Tissue Engineering: A Pilot Study In Vitro. Biotechnol. Biotechnol. Equip. 2017, 31, 1–773. DOI: 10.1080/13102818.2017.1332493.
  • Koppolu, B.; Prasanth Smith, S. G.; Ravindranathan, S.; Jayanthi, S.; Kumar, T. K. S.; Zaharoff, D. A. Controlling Chitosan-Based Encapsulation for Protein and Vaccine Delivery. Biomaterials 2014, 35, 4382–4389. DOI: 10.1016/j.biomaterials.2014.01.078.
  • Mazutis, L.; Vasiliauskas, R.; Weitz, D. A. Microfluidic Production of Alginate Hydrogel Particles for Antibody Encapsulation and Release. Macromol. Biosci. 2015, 15, 1641–1646. DOI: 10.1002/mabi.201500226.
  • Bezerra, M. A.; Santelli, R. E.; Oliveira, E. P.; Villar, L. S.; Escaleira, L. A. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. Talanta 2008, 76, 965–977. DOI: 10.1016/j.talanta.2008.05.019.
  • Abdel-Hafez, S. M.; Hathout, R. M.; Sammour, O. A. Towards Better Modeling of Chitosan Nanoparticles Production: Screening Different Factors and Comparing Two Experimental Designs. Int. J. Biol. Macromol. 2014, 64, 334–340. DOI: 10.1016/j.ijbiomac.2013.11.041.
  • Ito, T.; Tsuji, Y.; Aramaki, K.; Tonooka, N. Two-Step Emulsification Process for Water-in-Oil-in-Water Multiple Emulsions Stabilized by Lamellar Liquid Crystals. J. Oleo Sci. 2012, 61, 413–420. DOI: 10.5650/jos.61.413.
  • Paul, S.; Kumar, A.; Yedurkar, P.; Sawant, K. Design and Development of Multiple Emulsion for Enhancement of Oral Bioavailability of Acyclovir. Drug Dev. Ind. Pharm. 2013, 39, 1809–1817. DOI: 10.3109/03639045.2012.738682.
  • Najjar, A.; Alawi, M.; AbuHeshmeh, N.; Sallam, A. A Rapid, Isocratic HPLC Method for Determination of Insulin and Its Degradation Product. https://www.hindawi.com/journals/ap/2014/749823/cta/ (accessed Apr 8, 2019). DOI: 10.1155/2014/749823.
  • Sarmento, B.; Ribeiro, A.; Veiga, F.; Ferreira, D. Development and Validation of a Rapid Reversed-Phase HPLC Method for the Determination of Insulin from Nanoparticulate Systems. Biomed. Chromatogr. 2006, 20, 898–903. DOI: 10.1002/bmc.616.
  • Venkata Siddhartha, T.; Senthil, V.; Sai Kishan, I.; Basha Khatwal, R.; V Madhunapantula, S. Design and Development of Oral Nanoparticulated Insulin in Multiple Emulsion. Curr. Drug Deliv. 2014, 11, 472–485. DOI: 10.2174/1567201811666140414115259.
  • Yadav, K. S.; Sawant, K. K. Modified Nanoprecipitation Method for Preparation of Cytarabine-Loaded PLGA Nanoparticles. AAPS PharmSciTech 2010, 11, 1456–1465. DOI: 10.1208/s12249-010-9519-4.
  • Tirnaksiz, F.; Kalsin, O. A Topical W/o/w Multiple Emulsions Prepared with Tetronic 908 as a Hydrophilic Surfactant: Formulation, Characterization and Release Study. J. Pharm. Pharm. Sci. 2005, 8, 299–315.
  • Farahani, B. V.; Ghasemzaheh, H.; Afraz, S. Intelligent Semi-IPN Chitosan–PEG–PAAm Hydrogel for Closed-Loop Insulin Delivery and Kinetic Modeling. RSC Adv. 2016, 6, 26590–26598. DOI: 10.1039/C5RA28188A.
  • Möckel, J. E.; Lippold, B. C. Zero-Order Drug Release from Hydrocolloid Matrices. Pharm. Res. 1993, 10, 1066–1070. DOI: 10.1023/A:1018931210396.
  • Zheng, S.; Beissinger, R. L.; Sehgal, L. R.; Wasan, D. T. Ketamine-in Oil-in-Water Multiple Emulsion for Prolonged Drug Release. J. Dispers. Sci. Technol. 1999, 20, 235–245. DOI: 10.1080/01932699908943789.
  • Higuchi, T. Rate of Release of Medicaments from Ointment Bases Containing Drugs in Suspension. J. Pharm. Sci. 1961, 50, 874–875. DOI: 10.1002/jps.2600501018.
  • Korsmeyer, R. W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N. A. Mechanisms of Solute Release from Porous Hydrophilic Polymers. Int. J. Pharm. 1983, 15, 25–35. DOI: 10.1016/0378-5173(83)90064-9.
  • Peppas, N. A.; Sahlin, J. J. A Simple Equation for the Description of Solute Release. III. Coupling of Diffusion and Relaxation. Int. J. Pharm. 1989, 57, 169–172. DOI: 10.1016/0378-5173(89)90306-2.
  • Zhang, Y.; Huo, M.; Zhou, J.; Zou, A.; Li, W.; Yao, C.; Xie, S. DDSolver: An Add-In Program for Modeling and Comparison of Drug Dissolution Profiles. AAPS J. 2010, 12, 263–271. DOI: 10.1208/s12248-010-9185-1.
  • Glickman, M. E.; Rao, S. R.; Schultz, M. R. False Discovery Rate Control Is a Recommended Alternative to Bonferroni-Type Adjustments in Health Studies . J. Clin. Epidemiol. 2014, 67, 850–857. DOI: 10.1016/j.jclinepi.2014.03.012.
  • Aziz, A.; Jusoh, A.; Mamat, R.; Abdullah, A. A. Effect of Water Content and Tween 80 to the Stability of Emulsified Biodiesel. Appl. Mech. Mater. 2013, 465–466, 191–195. DOI: 10.4028/www.scientific.net/AMM.465-466.191.
  • Wei, H.; Zhong, F.; Ma, J.; Wang, Z. Formula Optimization of Emulsifiers for Preparation of Multiple Emulsions Based on Artificial Neural Networks. J. Dispers. Sci. Technol. 2008, 29, 319–326. DOI: 10.1080/01932690701716010.
  • Zhao, J.; Wei, T.; Wei, Z.; Yuan, F.; Gao, Y. Influence of Soybean Soluble Polysaccharides and Beet Pectin on the Physicochemical Properties of Lactoferrin-Coated Orange Oil Emulsion. Food Hydrocoll. 2015, 44, 443–452. DOI: 10.1016/j.foodhyd.2014.10.025.
  • Onuki, Y.; Morishita, M.; Takayama, K. Formulation Optimization of Water-in-Oil-Water Multiple Emulsion for Intestinal Insulin Delivery. J. Control Release 2004, 97, 91–99. DOI: 10.1016/j.jconrel.2004.03.010.
  • Liu, L.; Zhao, Q.; Liu, T.; Kong, J.; Long, Z.; Zhao, M. Sodium Caseinate/Carboxymethylcellulose Interactions at Oil–Water Interface: Relationship to Emulsion Stability. Food Chem. 2012, 132, 1822–1829. DOI: 10.1016/j.foodchem.2011.12.014.
  • Silva, C. M.; Ribeiro, A. J.; Figueiredo, M.; Ferreira, D.; Veiga, F. Microencapsulation of Hemoglobin in Chitosan-Coated Alginate Microspheres Prepared by Emulsification/Internal Gelation. AAPS J. 2006, 7, E903–E913. DOI: 10.1208/aapsj070488.
  • Kumar, A.; Sawant, K. K. Application of Multiple Regression Analysis in Optimization of Anastrozole-Loaded PLGA Nanoparticles. J. Microencapsul. 2014, 31, 105–114. DOI: 10.3109/02652048.2013.808280.
  • Pal, R. Viscosity Models for Multiple Emulsions. Food Hydrocoll. 2008, 22, 428–438. DOI: 10.1016/j.foodhyd.2006.12.012.
  • Pal, R. Rheology of Simple and Multiple Emulsions. Curr. Opin. Colloid Interface Sci. 2011, 16, 41–60. DOI: 10.1016/j.cocis.2010.10.001.
  • Vasiljević, D.; Parojčić, J.; Primorac, M.; Vuleta, G. Rheological and Droplet Size Analysis of W/O/W Multiple Emulsions Containing Low Concentrations of Polymeric Emulsifiers. J. Serb. Chem. Soc. 2009, 74, 801–816. DOI: 10.2298/JSC0907801V.
  • Gulão, E. D. S.; Souza, C. J. F. D.; Costa, A. R. D.; Rocha-Leão, M. H. M. D.; Garcia-Rojas, E. E. Stability and Rheological Behavior of Coconut Oil-in-Water Emulsions Formed by Biopolymers. Polímeros 2018, 28, 413–421. DOI: 10.1590/0104-1428.08017.
  • Abu-Jdayil, B.; Fara, D. A. Modification of the Rheological Behaviour of Sodium Alginate by Chitosan and Multivalent Electrolytes. Ital. J. Food Sci. 2013, 25, 196.
  • Cofelice, M.; Cuomo, F.; Lopez, F. Rheological Properties of Alginate–Essential Oil Nanodispersions. Colloids Interfaces 2018, 2, 48. DOI: 10.3390/colloids2040048.
  • İbanoğlu, E. Rheological Behaviour of Whey Protein Stabilized Emulsions in the Presence of Gum Arabic. J. Food Eng. 2002, 52, 273–277. DOI: 10.1016/S0260-8774(01)00115-7.
  • Perugini, L.; Cinelli, G.; Cofelice, M.; Ceglie, A.; Lopez, F.; Cuomo, F. Effect of the Coexistence of Sodium Caseinate and Tween 20 as Stabilizers of Food Emulsions at Acidic pH. Colloids Surf. B: Biointerfaces 2018, 168, 163–168. DOI: 10.1016/j.colsurfb.2018.02.003.
  • Coppi, G.; Iannuccelli, V.; Leo, E.; Bernabei, M. T.; Cameroni, R. Protein Immobilization in Crosslinked Alginate Microparticles. J. Microencapsul. 2002, 19, 37–44. DOI: 10.1080/02652040110055621.
  • Sarmento, B.; Ribeiro, A.; Veiga, F.; Sampaio, P.; Neufeld, R.; Ferreira, D. Alginate/Chitosan Nanoparticles Are Effective for Oral Insulin Delivery. Pharm. Res. 2007, 24, 2198–2206. DOI: 10.1007/s11095-007-9367-4.
  • Zhang, X. G.; Teng, D. Y.; Wu, Z. M.; Wang, X.; Wang, Z.; Yu, D. M.; Li, C. X. PEG-Grafted Chitosan Nanoparticles as an Injectable Carrier for Sustained Protein Release. J. Mater. Sci. Mater. Med. 2008, 19, 3525–3533. DOI: 10.1007/s10856-008-3500-8.
  • Yang, Y. Y.; Chung, T. S.; Ng, N. P. Morphology, Drug Distribution, and In Vitro Release Profiles of Biodegradable Polymeric Microspheres Containing Protein Fabricated by Double-Emulsion Solvent Extraction/Evaporation Method. Biomaterials 2001, 22, 231–241. DOI: 10.1016/S0142-9612(00)00178-2.
  • Horprasertkij, K.; Dwivedi, A.; Riansuwan, K.; Kiratisin, P.; Nasongkla, N. Spray Coating of Dual Antibiotic-Loaded Nanospheres on Orthopedic Implant for Prolonged Release and Enhanced Antibacterial Activity. J. Drug Deliv. Sci. Technol. 2019, 53, 101102. DOI: 10.1016/j.jddst.2019.05.051.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.