450
Views
22
CrossRef citations to date
0
Altmetric
Articles

Cellulose nanocrystals from blueberry pruning residues isolated by ionic liquids and TEMPO-oxidation combined with mechanical disintegration

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1731-1741 | Received 06 Dec 2019, Accepted 26 Apr 2020, Published online: 16 Jun 2020

References

  • Cline, B. Pruning Young Blueberry Plants. NC Blueberry J. 2019, http://ncblueberryjournal.blogspot.cl/2011/07/pruning-young-blueberry-plants.html. (accessed Jul 16).
  • UCONN. Blueberry: Pruning Techniques, Univ. Connect . http://www.ladybug.uconn.edu/FactSheets/blueberry.–pruning-techniques.php. (accessed Aug 1, 2017).
  • Pinochet, D. ; Artacho, P. ; Maraboli, A. Manual de Fertilización de Arándanos Cultivados en el Sur de Chile ; Universidad Austral de Chile: Valdivia, Chile, 2014.
  • Reddy, J. P. ; Rhim, J. Isolation and Characterization of Cellulose Nanocrystals from Garlic Skin. Mater. Lett. 2014, 129 , 20–23. DOI: 10.1016/j.matlet.2014.05.019.
  • Ballesteros, L. F. ; Teixeira, J. A. ; Mussatto, S. I. Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food Bioprocess Technol. 2014, 7 , 3493–3503. DOI: 10.1007/s11947-014-1349-z.
  • Johar, N. ; Ahmad, I. ; Dufresne, A. Extraction, Preparation and Characterization of Cellulose Fibres and Nanocrystals from Rice Husk. Ind. Crops Prod. 2012, 37 , 93–99. DOI: 10.1016/j.indcrop.2011.12.016.
  • Pacheco, C. M. ; Bustos, C. ; Reyes, G. ; Aguayo, M. G. ; Rojas, O. J. Characterization of Residues from Chilean Blueberry Bushes: A Potential Source of Cellulose. BioResources 2018, 13 , 7345–7359. DOI: 10.15376/biores.13.4.
  • Bano, S. ; Negi, Y. S. Studies on Cellulose Nanocrystals Isolated from Groundnut Shells. Carbohydr. Polym . 2017, 157 , 1041–1049. DOI: 10.1016/j.carbpol.2016.10.069.
  • Marett, J. ; Aning, A. ; Foster, E. J. The Isolation of Cellulose Nanocrystals from Pistachio Shells via Acid Hydrolysis. Ind. Crop. Prod. 2017, 109 , 869–874. DOI: 10.1016/j.indcrop.2017.09.039.
  • Sakinul Islam, M. ; Kao, N. ; Bhattacharya, S. N. ; Gupta, R. ; Choi, H. J. Potential Aspect of Rice Husk Biomass in Australia for Nanocrystalline Cellulose Production. Chinese J. Chem. Eng. 2018, 26 , 465–476. DOI: 10.1016/j.cjche.2017.07.004.
  • Hafemann, E. ; Battisti, R. ; Marangoni, C. ; Machado, R. A. F. Valorization of Royal Palm Tree Agroindustrial Waste by Isolating Cellulose Nanocrystals. Carbohydr. Polym . 2019, 218 , 188–198. DOI: 10.1016/j.carbpol.2019.04.086.
  • Ng, H. M. ; Sin, L. T. ; Tee, T. T. ; Bee, S. T. ; Hui, D. ; Low, C. Y. ; Rahmat, A. R. Extraction of Cellulose Nanocrystals from Plant Sources for Application as Reinforcing Agent in Polymers. Compos. Part B Eng. 2015, 75 , 176–200. DOI: 10.1016/j.compositesb.2015.01.008.
  • Salas, C. ; Nypelö, T. ; Rodriguez-Abreu, C. ; Carrillo, C. ; Rojas, O. J. Nanocellulose Properties and Applications in Colloids and Interfaces. Curr. Opin. Colloid Interface Sci. 2014, 19 , 383–396. DOI: 10.1016/j.cocis.2014.10.003.
  • Faradilla, R. H. F. ; Lee, G. ; Rawal, A. ; Hutomo, T. ; Stenzel, M. H. ; Arcot, J. Nanocellulose Characteristics from the Inner and Outer Layer of Banana Pseudo-Stem Prepared by TEMPO-Mediated Oxidation. Cellulose 2016, 23 , 3023–3037. DOI: 10.1007/s10570-016-1025-8.
  • Kumar, R. ; Sabu, A. ; Tiwari, S. K. Materials Chemistry and the Futurist Eco-Friendly Applications of Nanocellulose: Status and Prospect. J. Saudi Chem. Soc 2018, 22 , 949–978. DOI: 10.1016/j.jscs.2018.02.005.
  • Mariano, M. ; El Kissi, N. ; Dufresne, A. Cellulose Nanocrystals and Related Nanocomposites: Review of Some Properties and Challenges. J. Polym. Sci. Part B: Polym. Phys. 2014, 52 , 791–806. DOI: 10.1002/polb.23490.
  • Moon, R. J. ; Martini, A. ; Nairn, J. ; Simonsen, J. ; Youngblood, J. Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chem. Soc. Rev . 2011, 40 , 3941–3994. DOI: 10.1039/c0cs00108b.
  • Zhang, K. ; Sun, P. ; Liu, H. ; Shang, S. ; Song, J. ; Wang, D. Extraction and Comparison of Carboxylated Cellulose Nanocrystals from Bleached Sugarcane Bagasse Pulp Using Two Different Oxidation Methods. Carbohydr. Polym . 2016, 138 , 237–243. DOI: 10.1016/j.carbpol.2015.11.038.
  • Fillat, U. ; Wicklein, B. ; Martín-Sampedro, R. ; Ibarra, D. ; Ruiz-Hitzky, E. ; Valencia, C. ; Sarrión, A. ; Castro, E. ; Eugenia, M. ; Eugenio, M. E. Assessing Cellulose Nanofiber Production from Olive Tree Pruning Residue. Carbohydr. Polym . 2018, 179 , 252–261. DOI: 10.1016/j.carbpol.2017.09.072.
  • de Assis, C. A. ; Houtman, C. ; Phillips, R. ; Bilek, E. M. (T.). ; Rojas, O. J. ; Pal, L. ; Peresin, M. S. ; Jameel, H. ; Gonzalez, R. Conversion Economics of Forest Biomaterials: Risk and Financial Analysis of CNC Manufacturing. Biofuels, Bioprod. Bioref. 2017, 11 , 682–700. DOI: 10.1002/bbb.
  • Li, B. ; Xu, W. ; Kronlund, D. ; Määttänen, A. ; Liu, J. ; Smått, J. H. ; Peltonen, J. ; Willför, S. ; Mu, X. ; Xu, C. Cellulose Nanocrystals Prepared via Formic Acid Hydrolysis Followed by TEMPO-Mediated Oxidation. Carbohydr. Polym . 2015, 133 , 605–612. DOI: 10.1016/j.carbpol.2015.07.033.
  • Sung, S. H. ; Chang, Y. ; Han, J. Development of Polylactic Acid Nanocomposite Films Reinforced with Cellulose Nanocrystals Derived from Coffee Silverskin. Carbohydr. Polym . 2017, 169 , 495–503. DOI: 10.1016/j.carbpol.2017.04.037.
  • Oun, A. A. ; Rhim, J. W. Isolation of Cellulose Nanocrystals from Grain Straws and Their Use for the Preparation of Carboxymethyl Cellulose-Based Nanocomposite Films. Carbohydr. Polym . 2016, 150 , 187–200. DOI: 10.1016/j.carbpol.2016.05.020.
  • Brinchi, L. ; Cotana, F. ; Fortunati, E. ; Kenny, J. M. Production of Nanocrystalline Cellulose from Lignocellulosic Biomass: Technology and Applications. Carbohydr. Polym . 2013, 94 , 154–169. DOI: 10.1016/j.carbpol.2013.01.033.
  • Vekariya, R. L. A Review of Ionic Liquids: Applications towards Catalytic Organic Transformations. J. Mol. Liq 2017, 227 , 44–60. DOI: 10.1016/j.molliq.2016.11.123.
  • Tan, X. Y. ; Abd Hamid, S. B. ; Lai, C. W. Preparation of High Crystallinity Cellulose Nanocrystals (CNCs) by Ionic Liquid Solvolysis. Biomass Bioenergy 2015, 81 , 584–591. DOI: 10.1016/j.biombioe.2015.08.016.
  • Meenatchi, B. ; Renuga, V. ; Manikandan, A. Cellulose Dissolution and Regeneration Using Various Imidazolium Based Protic Ionic Liquids. J. Mol. Liq 2017, 238 , 582–588. DOI: 10.1016/j.molliq.2016.05.008.
  • Wei, D. ; Ivaska, A. Applications of Ionic Liquids in Electrochemical Sensors. Anal. Chim. Acta. 2008, 607 , 126–135. DOI: 10.1016/j.aca.2007.12.011.
  • Reyes, R. ; Aguayo, M. G. ; Fernández, A. ; Pääkkönen, T. ; Gacitua, W. ; Rojas, O. J. Dissolution and Hydrolysis of Bleached Kraft Pulp Using Ionic Liquids. Polymers (Basel, Switz.) 2019, 11 , 673–616. DOI: 10.3390/polym11040673.
  • TAPPI T280 pm 99 . Acetone Extractives of Wood and Pulp. Technical Association of the Pulp and Paper Industry ; TAPPI Press, Atlanta, GA, 2000.
  • Mateos, H. ; Valentini, A. ; Robles, E. ; Brooker, A. ; Cioffi, N. ; Palazzo, G. Measurement of the Zeta-Potential of Solid Surfaces through Laser Doppler Electrophoresis of Colloid Tracer in a Dip-Cell: Survey of the Effect of Ionic Strength, pH, Tracer Chemical Nature and Size. Colloids Surf. A. Physicochem. Eng. Asp. 2019, 576 , 82–90. DOI: 10.1016/j.colsurfa.2019.05.006.
  • Prathapan, R. ; Thapa, R. ; Garnier, G. ; Tabor, R. F. Modulating the Zeta Potential of Cellulose Nanocrystals Using Salts and Surfactants. Colloids Surf. A Physicochem. Eng. Asp 2016, 509 , 11–18. DOI: 10.1016/j.colsurfa.2016.08.075.
  • Varenne, F. ; Coty, J. B. ; Botton, J. ; Legrand, F. X. ; Hillaireau, H. ; Barratt, G. ; Vauthier, C. Evaluation of Zeta Potential of Nanomaterials by Electrophoretic Light Scattering: Fast Field Reversal versus Slow Field Reversal Modes. Talanta 2019, 205 , 120062. DOI: 10.1016/j.talanta.2019.06.062.
  • Beck, S. ; Méthot, M. ; Bouchard, J. General Procedure for Determining Cellulose Nanocrystal Sulfate Half-Ester Content by Conductometric Titration. Cellulose 2015, 22 , 101–116. DOI: 10.1007/s10570-014-0513-y.
  • SCAN-CM 65:02 . Total acidic group content, SCAN-CM 65:02, Total Acidic Group Content, Stockholm, Sweden; 2002.
  • Carrillo, I. ; Mendonça, R. T. ; Ago, M. ; Rojas, O. J. Comparative Study of Cellulosic Components Isolated from Different Eucalyptus Species. Cellulose 2018, 25 , 1011–1029. DOI: 10.1007/s10570-018-1653-2.
  • Segal, L. ; Creely, J. J. ; Martin, A. E. ; Conrad, C. M. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Text. Res. J. 1959, 29 , 786–794. [Database] DOI: 10.1177/004051755902901003.
  • Scherrer, P. Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen ; Springer: Berlin, Heidelberg, 1912. DOI: 10.1007/978-3-662-33915-2_7.
  • Hu, X. ; Xiao, Y. ; Niu, K. ; Zhao, Y. ; Zhang, B. ; Hu, B. Functional Ionic Liquids for Hydrolysis of Lignocellulose. Carbohydr. Polym . 2013, 97 , 172–176. DOI: 10.1016/j.carbpol.2013.04.061.
  • Iskak, N. A. M. ; Julkapli, N. M. ; Hamid, S. B. A. Understanding the Effect of Synthesis Parameters on the Catalytic Ionic Liquid Hydrolysis Process of Cellulose Nanocrystals. Cellulose 2017, 24 , 2469–2481. DOI: 10.1007/s10570-017-1273-2.
  • Feng, L. ; Chen, Z. I. Research Progress on Dissolution and Functional Modification of Cellulose in Ionic Liquids. J. Mol. Liq 2008, 142 , 1–5. DOI: 10.1016/j.molliq.2008.06.007.
  • Gong, J. ; Mo, L. ; Li, J. A Comparative Study on the Preparation and Characterization of Cellulose Nanocrystals with Various Polymorphs. Carbohydr. Polym . 2018, 195 , 18–28. DOI: 10.1016/j.carbpol.2018.04.039.
  • Landry, V. ; Alemdar, A. ; Blanchet, P. Nanocrystalline Cellulose: Morphological, Physical, and Mechanical Properties. For. Prod. J. 2011, 61 , 104–112. DOI: 10.13073/0015-7473-61.2.104.
  • Poaty, B. ; Vardanyan, V. ; Wilczak, L. ; Chauve, G. ; Riedl, B. Modification of Cellulose Nanocrystals as Reinforcement Derivatives for Wood Coatings. Prog. Org. Coatings 2014, 77 , 813–820. DOI: 10.1016/j.porgcoat.2014.01.009.
  • Naduparambath, S. ; Jinitha, T. V. ; Shaniba, V. ; Sreejith, M. P. ; Balan, A. K. ; Purushothaman, E. Isolation and Characterisation of Cellulose Nanocrystals from Sago Seed Shells. Carbohydr. Polym . 2018, 180 , 13–20. DOI: 10.1016/j.carbpol.2017.09.088.
  • Reyes, G. ; Borghei, M. ; King, A. W. T. ; Lahti, J. ; Rojas, O. J. Solvent Welding and Imprinting Cellulose Nanofiber Films Using Ionic Liquids. Biomacromolecules 2019, 20 , 502–514. DOI: 10.1021/acs.biomac.8b01554.
  • Du, C. ; Li, H. ; Li, B. ; Liu, M. ; Zhan, H. Characteristics and Properties of Cellulose Nanofibers Prepared by TEMPO Oxidation of Corn Husk. BioResources 2016, 11 , 5276–5284. DOI: 10.15376/biores.11.2.5276-5284.
  • Liu, Y. ; Sui, Y. ; Liu, C. ; Liu, C. ; Wu, M. ; Li, B. ; Li, Y. A Physically Crosslinked Polydopamine/Nanocellulose Hydrogel as Potential Versatile Vehicles for Drug Delivery and Wound healing. Carbohydr. Polym . 2018, 188 , 27–36. DOI: 10.1016/j.carbpol.2018.01.093.
  • Mandal, A. ; Chakrabarty, D. Isolation of Nanocellulose from Waste Sugarcane Bagasse (SCB) and Its Characterization. Carbohydr. Polym 2011, 86 , 1291–1299. DOI: 10.1016/j.carbpol.2011.06.030.
  • Sofla, M. R. K. ; Brown, R. J. ; Tsuzuki, T. ; Rainey, T. J. A Comparison of Cellulose Nanocrystals and Nellulose Nanofibres Extracted from Bagasse Using Acid and Ball Milling Methods. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2016, 7 , 1–9. DOI: 10.1088/2043-6262/7/3/035004.
  • El Achaby, M. ; Kassab, Z. ; Barakat, A. ; Aboulkas, A. Alfa Fibers as Viable Sustainable Source for Cellulose Nanocrystals Extraction. Ind. Crops Prod. 2018, 112 , 499–510. DOI: 10.1016/j.indcrop.2017.12.049.
  • Jiang, H. ; Wu, Y. ; Han, B. ; Zhang, Y. Effect of Oxidation Time on the Properties of Cellulose Nanocrystals from Hybrid Poplar Residues Using the Ammonium Persulfate. Carbohydr. Polym . 2017, 174 , 291–298. DOI: 10.1016/j.carbpol.2017.06.080.
  • Mahmud, M. ; Perveen, A. ; Jahan, R. A. ; Matin, A. ; Yee, S. ; Li, X. ; Arafat, M. T. Preparation of Different Polymorphs of Cellulose from Different Acid Hydrolysis Medium. Int. J. Biol. Macromol. 2019, 130 , 969–976. DOI: 10.1016/j.ijbiomac.2019.03.027.
  • Coelho, K. C. ; Cornelis, H. J. ; Hilário, M. O. ; Cerqueira, M. ; Arantes, V. Preparation of Nanocellulose from Imperata Brasiliensis Grass Using Taguchi Method. Carbohydr. Polym . 2018, 192 , 337–346. DOI: 10.1016/j.carbpol.2018.03.055.
  • Smyth, M. ; García, A. ; Rader, C. ; Foster, E. J. ; Bras, J. Extraction and Process Analysis of High Aspect Ratio Cellulose Nanocrystals from Corn (Zea Mays) Agricultural Residue. Ind. Crops Prod. 2017, 108 , 257–266. DOI: 10.1016/j.indcrop.2017.06.006.
  • Wang, Z. ; Yao, Z. ; Zhou, J. ; He, M. ; Jiang, Q. ; Li, S. ; Ma, Y. ; Liu, M. ; Luo, S. Isolation and Characterization of Cellulose Nanocrystals from Pueraria Root Residue. Int. J. Biol. Macromol. 2019, 129 , 1081–1089. DOI: 10.1016/j.ijbiomac.2018.07.055.
  • Amarasekara, A. S. ; Owereh, O. S. Synthesis of a Sulfonic Acid Functionalized Acidic Ionic Liquid Modified Silica Catalyst and Applications in the Hydrolysis of Cellulose. Catal. Commun. 2010, 11 , 1072–1075. DOI: 10.1016/j.catcom.2010.05.012.
  • Poyraz, B. ; Tozluoğlu, A. ; Candan, Z. ; Demir, A. ; Yavuz, M. ; Büyuksarı, Ü. ; Ünal, H. İ. ; Fidan, H. ; Saka, R. C. TEMPO-Treated CNF Composites: Pulp and Matrix Effect. Fibers Polym. 2018, 19 , 195–204. DOI: 10.1007/s12221-018-7673-y.
  • Lorenzen, A. L. ; Rossi, T. S. ; Riegel-Vidotti, I. C. ; Vidotti, M. Influence of Cationic and Anionic Micelles in the (Sono) Chemical Synthesis of Stable Ni (OH)2 Nanoparticles: “in Situ” Zeta-Potential Measurements and Electrochemical Properties. Appl. Surf. Sci. 2018, 455 , 357–366. DOI: 10.1016/j.apsusc.2018.05.198.
  • Markiewicz, M. ; Mrozik, W. ; Rezwan, K. ; Thöming, J. ; Hupka, J. ; Jungnickel, C. Changes in Zeta Potential of Imidazolium Ionic Liquids Modified minerals-Implications for Determining Mechanism of Adsorption. Chemosphere 2013, 90 , 706–712. DOI: 10.1016/j.chemosphere.2012.09.053.
  • Prado, K. S. ; Spinacé, M. A. S. Isolation and Characterization of Cellulose Nanocrystals from Pineapple Crown Waste and Their Potential Uses. Int. J. Biol. Macromol. 2019, 122 , 410–416. DOI: 10.1016/j.ijbiomac.2018.10.187.
  • Kallel, F. ; Bettaieb, F. ; Khiari, R. ; García, A. ; Bras, J. ; Chaabouni, S E. Isolation and Structural Characterization of Cellulose Nanocrystals Extracted from Garlic Straw Residues. Ind. Crops Prod. 2016, 87 , 287–296. DOI: 10.1016/j.indcrop.2016.04.060.
  • Roman, M. ; Winter, W.T. Effect of Sulfate Groups from Sulfuric Acid Hydrolysis on the Thermal Degradation Behavior of Bacterial Cellulose. Biomacromolecules 2004, 5 , 1671–1677. DOI: 10.1021/bm034519+.
  • Leão, R. M. ; Miléo, P. C. ; Maia, J. M. L. L. ; Luz, S. M. Environmental and Technical Feasibility of Cellulose Nanocrystal Manufacturing from Sugarcane Bagasse. Carbohydr. Polym . 2017, 175 , 518–529. DOI: 10.1016/j.carbpol.2017.07.087.
  • Abushammala, H. ; Krossing, I. ; Laborie, M. P. Ionic Liquid - Mediated Technology to Produce Cellulose Nanocrystals Directly from Wood. Carbohydr. Polym . 2015, 134 , 609–616. DOI: 10.1016/j.carbpol.2015.07.079.
  • Man, Z. ; Muhammad, N. ; Sarwono, A. ; Bustam, M. A. ; Kumar, M. V. ; Rafiq, S. Preparation of Cellulose Nanocrystals Using an Ionic Liquid. J. Polym. Environ . 2011, 19 , 726–731. DOI: 10.1007/s10924-011-0323-3.
  • Habibi, Y. ; Lucia, L. A. ; Rojas, O. J. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem. Rev. 2010, 110 , 3479–3500. DOI: 10.1021/cr900339w.
  • Abdul, N. ; Uzir, M. ; Guo, Q. ; Mahmoodian, S. ; Soheilmoghaddam, M. Development of Regenerated Cellulose/Halloysites Nanocomposites via Ionic Liquids. Carbohydr. Polym . 2014, 99 , 91–97. DOI: 10.1016/j.carbpol.2013.07.080.
  • Liu, X. ; Pang, J. ; Zhang, X. ; Wu, Y. ; Sun, R. Regenerated Cellulose Film with Enhanced Tensile Strength Prepared with Ionic Liquid 1-Ethyl-3-Methylimidazolium Acetate (EMIMAc). Cellulose 2013, 20 , 1391–1399. DOI: 10.1007/s10570-013-9925-3.
  • Ma, H. ; Zhou, B. ; Li, H. S. ; Li, Y. Q. ; Ou, S. Y. Green Composite Films Composed of Nanocrystalline Cellulose and a Cellulose Matrix Regenerated from Functionalized Ionic Liquid Solution. Carbohydr. Polym. 2011, 84 , 383–389. DOI: 10.1016/j.carbpol.2010.11.050.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.