204
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Graphene oxide-based ZnFe2O4 catalyst for efficient adsorption and degradation of methylene blue from water

, , &
Pages 282-288 | Received 03 Mar 2020, Accepted 12 Oct 2020, Published online: 06 Nov 2020

References

  • Fu, Y.; Wang, X. Magnetically Separable ZnFe2O4–Graphene Catalyst and Its High Photocatalytic Performance under Visible Light Irradiation. Ind. Eng. Chem. Res. 2011, 50, 7210–7218.
  • Rani, G. J.; Rajan, M. J. Reduced Graphene Oxide/ZnFe2O4 Nanocomposite as an Efficient Catalyst for the Photocatalytic Degradation of Methylene Blue Dye. Res. Chem. Interm. 2017, 43, 2669–2690.
  • Jing, H.-P.; Wang, C.-C.; Zhang, Y.-W.; Wang, P.; Li, R. Photocatalytic Degradation of Methylene Blue in ZIF-8. RSC Adv. 2014, 4, 54454–54462.
  • Ng, Y. H.; Lightcap, I. V.; Goodwin, K.; Matsumura, M.; Kamat, P. V. To What Extent Do Graphene Scaffolds Improve the Photovoltaic and Photocatalytic Response of TiO2 Nanostructured Films? J. Phys. Chem. Lett. 2010, 1, 2222–2227.
  • Liang, Y.; Wang, H.; Casalongue, H. S.; Chen, Z.; Dai, H. TiO2 Nanocrystals Grown on Graphene as Advanced Photocatalytic Hybrid Materials. Nano Res. 2010, 3, 701–705.
  • Kumaresan, L.; Mahalakshmi, M.; Palanichamy, M.; Murugesan, V. Synthesis, Characterization, and Photocatalytic Activity of Sr2+ Doped TiO2 Nanoplates. Ind. Eng. Chem. Res. 2010, 49, 1480–1485.
  • Cabir, B.; Yurderi, M.; Caner, N.; Agirtas, M. S.; Zahmakiran, M.; Kaya, M. Methylene Blue Photocatalytic Degradation under Visible Light Irradiation on Copper Phthalocyanine-Sensitized TiO2 Nanopowders. Mater. Sci. Eng. B 2017, 224, 9–17.
  • Xu, S.; Feng, D.; Shangguan, W. Preparations and Photocatalytic Properties of Visible-Light-Active Zinc Ferrite-Doped TiO2 Photocatalyst. J. Phys. Chem. C 2009, 113, 2463–2467.
  • Zhang, G.-Y.; Sun, Y.-Q.; Gao, D.-Z.; Xu, Y.-Y. Quasi-Cube ZnFe2O4 Nanocrystals: Hydrothermal Synthesis and Photocatalytic Activity with TiO2 (Degussa P25) as Nanocomposite. Mater. Res. Bull. 2010, 45, 755–760.
  • Cai, W.; Chen, F.; Shen, X.; Chen, L.; Zhang, J. Enhanced Catalytic Degradation of AO7 in the CeO2–H2O2 System with Fe3+ Doping. Appl. Catal. B 2010, 101, 160–168.
  • Hirakawa, T.; Nosaka, Y. Properties of O2•-and OH• Formed in TiO2 Aqueous Suspensions by Photocatalytic Reaction and the Influence of H2O2 and Some Ions. Langmuir 2002, 18, 3247–3254.
  • Akhavan, O.; Azimirad, R. Photocatalytic Property of Fe2O3 Nanograin Chains Coated by TiO2 Nanolayer in Visible Light Irradiation. Appl. Catal. A 2009, 369, 77–82.
  • Akhavan, O. Thickness Dependent Activity of Nanostructured TiO2/α-Fe2O3 Photocatalyst Thin Films. Appl. Surf. Sci. 2010, 257, 1724–1728.
  • Laokul, P.; Amornkitbamrung, V.; Seraphin, S.; Maensiri, S. Characterization and Magnetic Properties of Nanocrystalline CuFe2O4, NiFe2O4, ZnFe2O4 Powders Prepared by the Aloe Vera Extract Solution. Curr. Appl. Phys. 2011, 11, 101–108.
  • Zhang, B.; Zhang, J.; Chen, F. Preparation and Characterization of Magnetic TiO2/ZnFe2O4 Photocatalysts by a Sol–Gel Method. Res. Chem. Intermed. 2008, 34, 375–380.
  • Burghard, M.; Klauk, H.; Kern, K. Carbon-Based Field-Effect Transistors for Nanoelectronics. Adv. Mater. 2009, 21, 2586–2600.
  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669.
  • Xu, C.; Wang, X.; Yang, L.; Wu, Y. Fabrication of a Graphene–Cuprous Oxide Composite. J. Solid State Chem. 2009, 182, 2486–2490.
  • Raj Kumar, T.; Gnana Kumar, G.; Manthiram, A. Biomass-Derived 3D Carbon Aerogel with Carbon Shell-Confined Binary Metallic Nanoparticles in CNTs as an Efficient Electrocatalyst for Microfluidic Direct Ethylene Glycol Fuel Cells. Adv. Energy Mater. 2019, 9, 1803238.
  • Ranjani, M.; Sathishkumar, Y.; Lee, Y. S.; Jin Yoo, D.; Kim, A. R.; Gnana Kumar, G. Ni–Co Alloy Nanostructures Anchored on Mesoporous Silica Nanoparticles for Non-Enzymatic Glucose Sensor Applications. RSC Adv. 2015, 5, 57804–57814.
  • Gnana Kumar, G.; Amala, G.; Gowtham, S. M. Recent Advancements, Key Challenges and Solutions in Non-Enzymatic Electrochemical Glucose Sensors Based on Graphene Platforms. RSC Adv. 2017, 7, 36949–36976.
  • Wu, X.; Zhang, X.; Zhao, C.; Qian, X. One-pot hydrothermal synthesis of ZnO/RGO/ZnO@Zn sensor for sunset yellow in soft drinks. Talanta 2018, 179, 836–844. DOI: https://doi.org/10.1016/j.talanta.2017.12.005.
  • Sherlala, A.; Raman, A.; Bello, M.; Asghar, A. A Review of the Applications of Organo-Functionalized Magnetic Graphene Oxide Nanocomposites for Heavy Metal Adsorption. Chemosphere 2018, 193, 1004–1017. DOI: https://doi.org/10.1016/j.chemosphere.2017.11.093.
  • Phiri, J.; Gane, P.; Maloney, T. C. General Overview of Graphene: Production, Properties and Application in Polymer Composites. Mater. Sci. Eng. B 2017, 215, 9–28.
  • Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and Graphene Oxide: synthesis, Properties, and Applications. Adv. Mater. 2010, 22, 3906–3924. DOI: https://doi.org/10.1002/adma.201001068.
  • Dehghani-Dashtabi, M.; Hekmatara, H.; Seyed-Yazdi, J. Synthesis and Improved Photoactivity of Magnetic Quaternary Nanocomposites Consisting of Fe3O4@ ZnO Core@ Shell Nanoparticles Decorated on Graphene-Oxide Grafted Poly-Citric Acid. Phys. B 2019, 553, 11–17.
  • Zarrabi, M.; Haghighi, M.; Alizadeh, R.; Mahboob, S. Solar-Light-Driven Photodegradation of Organic Dyes on Sono-Dispersed ZnO Nanoparticles over Graphene Oxide: Sono vs. conventional Catalyst Design. Sep. Purif. Technol. 2019, 211, 738–752.
  • Hummers, W.; Offeman, R. Functionalized Graphene and Graphene Oxide: Materials Synthesis. J. Am. Chem. Soc. 1958, 80, 1339–1344.
  • Salamon, J.; Sathishkumar, Y.; Ramachandran, K.; Lee, Y. S.; Yoo, D. J.; Kim, A. R.; Gnana Kumar, G. One-Pot Synthesis of Magnetite Nanorods/Graphene Composites and Its Catalytic Activity toward Electrochemical Detection of Dopamine. Biosens. Bioelectron. 2015, 64, 269–276. DOI: https://doi.org/10.1016/j.bios.2014.08.085.
  • Wu, Z.; Zhu, W.; Zhang, M.; Lin, Y.; Xu, N.; Chen, F.; Wang, D.; Chen, Z. Adsorption and Synergetic Fenton-like Degradation of Methylene Blue by a Novel Mesoporous α-Fe2O3/SiO2 at Neutral pH. Ind. Eng. Chem. Res. 2018, 57, 5539–5549.
  • Sadiq Mohamed, M. J.; Bhat Denthaje, K. Novel RGO-ZnWO4-Fe3O4 Nanocomposite as an Efficient Catalyst for Rapid Reduction of 4-Nitrophenol to 4-Aminophenol. Ind. Eng. Chem. Res. 2016, 55, 7267–7272.
  • Ning, L.; Liu, Y.; Ma, J.; Fan, X.; Zhang, G.; Zhang, F.; Peng, W.; Li, Y. Synthesis of Palladium, ZnFe2O4 Functionalized Reduced Graphene Oxide Nanocomposites as H2O2 Detector. Ind. Eng. Chem. Res. 2017, 56, 4327–4333.
  • Wang, S.; Zhao, Y.; Gao, M.; Xue, H.; Xu, Y.; Feng, C.; Shi, D.; Liu, K.; Jiao, Q. Green Synthesis of Porous Cocoon-like rGO for Enhanced Microwave-Absorbing Performances. ACS Appl. Mater. Interfaces 2018, 10, 42865–42874.
  • Jeong, H.-K.; Lee, Y. P.; Lahaye, R. J.; Park, M.-H.; An, K. H.; Kim, I. J.; Yang, C.-W.; Park, C. Y.; Ruoff, R. S.; Lee, Y. H. Evidence of Graphitic AB Stacking Order of Graphite Oxides. J. Am. Chem. Soc. 2008, 130, 1362–1366. DOI: https://doi.org/10.1021/ja076473o.
  • Hou, C.; Zhang, Q.; Zhu, M.; Li, Y.; Wang, H. One-Step Synthesis of Magnetically-Functionalized Reduced Graphite Sheets and Their Use in Hydrogels. Carbon 2011, 49, 47–53.
  • Fei, P.; Wang, Q.; Zhong, M.; Su, B. Preparation and Adsorption Properties of Enhanced Magnetic Zinc Ferrite-Reduced Graphene Oxide Nanocomposites via a Facile One-Pot Solvothermal Method. J. Alloys Compd. 2016, 685, 411–417.
  • Zhang, H.; Lv, X.; Li, Y.; Wang, Y.; Li, J. P25-Graphene Composite as a High Performance Photocatalyst. ACS Nano. 2010, 4, 380–386. DOI: https://doi.org/10.1021/nn901221k.
  • Cui, R.; Lin, Y.; Qian, J.; Zhu, Y.; Xu, N.; Chen, F.; Liu, C.; Wu, Z.; Chen, Z.; Zhou, X. Two-Dimensional Porous SiO2 Nanostructures Derived from Renewable Petal Cells with Enhanced Adsorption Efficiency for Removal of Hazardous Dye. ACS Sustainable Chem. Eng. 2017, 5, 3478–3487.
  • Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H. PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs. J. Am. Chem. Soc. 2008, 130, 10876–10877. DOI: https://doi.org/10.1021/ja803688x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.