145
Views
1
CrossRef citations to date
0
Altmetric
Articles

The roles of M-TiO2 (M = Co2+ & F) nanoparticles loaded on RGO in the denitrogenation performance of photocatalytic

, ORCID Icon, , , , , & show all
Pages 141-151 | Received 27 Jul 2020, Accepted 12 Oct 2020, Published online: 02 Dec 2020

References

  • Khan, N. A. ; Jhung, S. H. Scandium-Triflate/Metal-Organic Frameworks: Remarkable Adsorbents for Desulfurization and Denitrogenation. Inorg. Chem. 2015, 54 , 11498–11504. DOI: 10.1021/acs.inorgchem.5b02118.
  • Almarri, M. ; Ma, X. ; Song, C. Selective Adsorption for Removal of Nitrogen Compounds from Liquid Hydrocarbon Streams over Carbon-and Alumina-Based Adsorbents. Ind. Eng. Chem. Res. 2009, 48 , 951–960. DOI: 10.1021/ie801010w.
  • Laredo, G. C. ; Vega-Merino, P. M. ; Fernando, T.-Z. ; Jesús, C. Denitrogenation of Middle Distillates Using Adsorbent Materials towards Ulsd Production: A Review. Fuel Process. Technol. 2013, 106 , 21–32. DOI: 10.1016/j.fuproc.2012.09.057.
  • Thepwatee, S. ; Chekuntod, N. ; Chanchawee, A. ; Pitakjakpipop, P. Light-Enhanced Adsorptive Desulfurization of Dibenzothiophene Using Supported TiO2-ZrO2 . Key Eng. Mater. 2019, 798 , 391–396. DOI: 10.4028/www.scientific.net/KEM.798.391.
  • Adam, F. ; Bertoncini, F. ; Dartiguelongue, C. ; Marchand, K. ; Thiébaut, D. ; Hennion, M. C. Comprehensive Two-Dimensional Gas Chromatography for Basic and Neutral Nitrogen Speciation in Middle Distillates. Fuel 2009, 88 , 938–946. DOI: 10.1016/j.fuel.2008.11.032.
  • Li, N. ; Ma, X. ; Zha, Q. ; Song, C. Analysis and Comparison of Nitrogen Compounds in Different Liquid Hydrocarbon Streams Derived from Petroleum and Coal. Energy Fuels 2010, 24 , 5539–5547. DOI: 10.1021/ef1007598.
  • Ledesma, B. C. ; Juárez, J. M. ; Valles, V. A. ; Anunziata, O. A. ; Beltramone, A. R. Novel Preparation of Titania-Modified CMK-3 Nanostructured Material as Support for Ir Catalyst Applied in Hydrodenitrogenation of Indole. Catal. Lett. 2017, 147 , 1029–1039. DOI: 10.1007/s10562-017-2005-9.
  • Yi, H. ; Yang, K. ; Tang, X. ; Liu, X. ; Zhao, S. ; Gao, F. ; Huang, Y. ; Yang, Z. ; Wang, J. ; Shi, Y. Effects of Preparation Conditions on the Performance of Simultaneous Desulfurization and Denitrification over SiO2-MnOx Composites. J. Clean. Prod. 2018, 189 , 627–634. DOI: 10.1016/j.jclepro.2018.04.044.
  • Su, L. ; Li, K. ; Zhang, H. ; Fan, M. ; Ying, D. ; Sun, T. ; Wang, Y. ; Jia, J. Electrochemical Nitrate Reduction by Using a Novel Co3O4/Ti Cathode. Water Res. 2017, 120 , 1–11. DOI: 10.1016/j.watres.2017.04.069.
  • Liuping, Z. ; Mei, L. ; Yingying, H. ; Guiyang, Y. ; Binquan, Z. ; Ling, L. Photocatalytic Denitrogenation over Modified Waste FCC Catalyst. China Pet Process Petrochem. Technol. 2013, 15 , 33–37. DOI: 10.3969/j.issn.1008-6234.2013.03.012.
  • Hu, X. ; Li, G. ; Yu, J. C. Design, Fabrication, and Modification of Nanostructured Semiconductor Materials for Environmental and Energy Applications. Langmuir 2010, 26 , 3031–3039. DOI: 10.1021/la902142b.
  • Chang, S. M. ; Liu, W. S. The Roles of Surface-Doped Metal Ions (V, Mn, Fe, Cu, Ce, and W) in the Interfacial Behavior of TiO2 Photocatalysts. Appl. Catal. B Environ. 2014, 156–157 , 466–475. DOI: 10.1016/j.apcatb.2014.03.044.
  • Islam, M. ; Zalikha, N. ; Kosslick, H. ; Zainuddin, M. T. ; Zubir, Z. A. ; Nazri, A. A. ; Izat, M. Effect of Single and Bimetallic Ni, V and Mn Transition Metal Ion Doping on the Properties of Anatase/Brookite TiO2 Photocatalyst. Adv. Mater. Res. 2016, 1133 , 527–531. DOI: 10.4028/www.scientific.net/AMR.1133.527.
  • Quintana, M. ; Edvinsson, T. ; Hagfeldt, A. ; Boschloo, G. Comparison of Dye-Sensitized ZnO and TiO2 Solar Cells: Studies of Charge Transport and Carrier Lifetime. J. Phys. Chem. C 2007, 111 , 1035–1041. DOI: 10.1021/jp065948f.
  • Xu, A. W. ; Gao, Y. ; Liu, H. Q. The Preparation, Characterization, and Their Photocatalytic Activities of Rare-Earth-Doped TiO2 Nanoparticles. J. Catal. 2002, 207 , 151–157. DOI: 10.1006/jcat.2002.3539.
  • Choi, W. ; Termin, A. ; Hoffmann, M. R. The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. J. Phys. Chem. 1994, 98 , 13669–13679. DOI: 10.1021/j100102a038.
  • Weng, H. ; Yang, X. ; Dong, J. ; Mizuseki, H. ; Kawasaki, M. ; Kawazoe, Y. Electronic Structure and Optical Properties of the Co-Doped Anatase TiO2 Studied from First Principles. Phys. Rev. B 2004, 69 , 125219.1–125219.6. DOI: 10.1103/PhysRevB.69.125219.
  • Umebayashi, T. ; Yamaki, T. ; Itoh, H. ; Asai, K. Analysis of Electronic Structures of 3D Transition Metal-Doped TiO2 Based on Band Calculations. J. Phys. Chem. Solids 2002, 63 , 1909–1920. DOI: 10.1016/S0022-3697(02)00177-4.
  • Xie, Y. ; Yuan, C. Rare Earth Ion Modified TiO2 Sols for Photocatalysis Application under Visible Light Excitation. Rare Met. 2004, 23 , 20–26. DOI: 10.1002/pip.540.
  • Devi, L. G. ; Murthy, B. N. Characterization of Mo Doped TiO2 and Its Enhanced Photo Catalytic Activity under Visible Light. Catal. Lett. 2008, 125 , 320–330. DOI: 10.1007/s10562-008-9568-4.
  • Chang, S. M. ; Hou, C. Y. ; Lo, P. H. ; Chang, C. T. Preparation of Phosphated Zr-Doped TiO2 Exhibiting High Photocatalytic Activity through Calcination of Ligand-Capped Nanocrystals. Appl. Catal. B 2009, 90 , 233–241. DOI: 10.1016/j.apcatb.2009.03.009.
  • Bloh, J. Z. ; Dillert, R. ; Bahnemann, D. W. Designing Optimal Metal-Doped Photocatalysts: Correlation between Photocatalytic Activity, Doping Ratio, and Particle Size. J. Phys. Chem. C 2012, 116 , 25558–25562. DOI: 10.1021/jp307313z.
  • Wang, Y. ; Zhang, R. ; Li, J. ; Li, L. ; Lin, S. First-Principles Study on Transition Metal-Doped Anatase TiO2 . Nanoscale Res. Lett. 2014, 9 , 46. DOI: 10.1186/1556-276X-9-46.
  • Cheng, Z. ; Liu, T. ; Yang, C. ; Gan, H. ; Zhang, F. ; Chen, J. Study on the Electronic Structures of the Reduced Anatase TiO2 by the First-Principle Calculation. J. Phys. Chem. Solids 2012, 73 , 302–307. DOI: 10.1016/j.jpcs.2011.10.020.
  • Kong, M. ; Li, Y. ; Chen, X. ; Tian, T. ; Fang, P. ; Zheng, F. ; Zhao, X. Tuning the Relative Concentration Ratio of Bulk Defects to Surface Defects in TiO2 Nanocrystals Leads to High Photocatalytic Efficiency. J. Am. Chem. Soc. 2011, 133 , 16414–16417. DOI: 10.1021/ja207826q.
  • Yang, H. G. ; Sun, C. H. ; Qiao, S. Z. ; Zou, J. ; Liu, G. ; Smith, S. C. ; Cheng, H. M. ; Lu, G. Q. Anatase TiO2 Single Crystals with a Large Percentage of Reactive facets. Nature 2008, 453 , 638–641. DOI: 10.1038/nature06964.
  • Wu, G. ; Wang, J. ; Thomas, D. F. ; Chen, A. Synthesis of F-Doped Flower-like TiO2 Nanostructures with High Photoelectrochemical Activity. Langmuir 2008, 24 , 3503–3509. DOI: 10.1021/la703098g.
  • Xu, J. ; Ao, Y. ; Fu, D. ; Yuan, C. Low-Temperature Preparation of F-Doped TiO2 Film and Its Photocatalytic Activity under Solar Light. Appl.Surf. Sci. 2008, 254 , 3033–3038. DOI: 10.1016/j.apsusc.2007.10.065.
  • Pan, J. H. ; Zhang, X. ; Du, A. J. ; Sun, D. D. ; Leckie, J. O. Self-Etching Reconstruction of Hierarchically Mesoporous F-TiO2 Hollow Microspherical Photocatalyst for Concurrent Membrane Water Purifications. J. Am. Chem. Soc. 2008, 130 , 11256–11257. DOI: 10.1021/ja803582m.
  • Kim, H. ; Abdala, A. A. ; MacOsko, C. W. Graphene/Polymer Nanocomposites. Macromolecule 2010, 43 , 6515–6530. DOI: 10.1021/ma100572e.
  • Ramakrishnan, S. ; Dhakshnamoorthy, M. ; Jelmy, E. J. ; Vasanthakumari, R. ; Kothurkar, N. K. Synthesis and Characterization of Graphene Oxide–Polyimide Nanofiber Composites. RSC Adv. 2014, 4 , 9743–9723. DOI: 10.1039/c3ra46004e.
  • Kuilla, T. ; Bhadra, S. ; Yao, D. ; Kim, N. H. ; Bose, S. ; Lee, J. H. Recent Advances in Graphene Based Polymer Composites. Prog. Polym. Sci. 2010, 35 , 1350–1375. DOI: 10.1016/j.progpolymsci.2010.07.005.
  • Wang, Y.-X. ; Lim, Y.-G. ; Park, M.-S. ; Chou, S.-L. ; Kim, J. H. ; Liu, H.-K. ; Dou, S.-X. ; Kim, Y.-J. Ultrafine SnO2 Nanoparticle Loading onto Reduced Graphene Oxide as Anodes for Sodium-Ion Batteries with Superior Rate and Cycling Performances. J. Mater. Chem. A 2014, 2 , 529–534. DOI: 10.1039/C3TA13592F.
  • Moon, G. H. ; Park, Y. ; Kim, W. ; Choi, W. Photochemical Loading of Metal Nanoparticles on Reduced Graphene Oxide Sheets Using Phosphotungstate. Carbon 2011, 49 , 3454–3462. DOI: 10.1016/j.carbon.2011.04.042.
  • Chen, Y. ; Zhang, H. ; L.; Liang , Y. ; N.; Gao , Y. ; H. ; L. ; Y. C. Super-Oleophilicity Co-Doping Co2+/F/TiO2 One-Dimensional Nanotubes for Photocatalytic Denitrification of Light Oil. Petrol. Sci. Technol. 2019, 7 , 787–795. DOI: 10.1080/10916466.2019.1566251.
  • Zhu, X. ; Zhang, F. ; Wang, M. ; Gao, X. ; Luo, Y. ; Xue, J. ; Zhang, Y. ; Ding, J. ; Sun, S. ; Bao, J. ; Gao, C. A Shuriken-Shaped m-BiVO4/{001}-TiO2 Heterojunction: Synthesis, Structure and Enhanced Visible Light Photocatalytic Activity. Appl. Catal. A 2016, 521 , 42–49. DOI: 10.1016/j.apcata.2015.10.017.
  • Khalid, N. R. ; Ahmed, E. ; Niaz, N. A. ; Nabi, G. ; Ahmad, M. ; Tahir, M. B. ; Rafique, M. ; Rizwan, M. ; Khan, Y. Highly Visible Light Responsive Metal Loaded N/TiO2 Nanoparticles for Photocatalytic Conversion of CO2 into Methane. Ceram. Int. 2017, 43 , 6771–6777. DOI: 10.1016/j.ceramint.2017.02.093.
  • Liu, S. ; Guo, E. ; Yin, L. Tailored Visible-Light Driven Anatase TiO2 Photocatalysts Based on Controllable Metal Ion Doping and Ordered Mesoporous Structure. J. Mater. Chem. 2012, 22 , 5031–5041. DOI: 10.1039/c2jm15965a.
  • Mohamed Islam, N. Z. ; Kosslick, H. ; Zainuddin, M. T. ; Zubir, Z. A. ; Abdul Aziz Nazri, S. A. ; Abdul Malek, M. Z. ; Mohd Ezwan, M. I. ; Md Salleh, S. N. ; Abdul Aziz, M. S. Effect of Single and Bimetallic Ni, V and Mn Transition Metal Ion Doping on the Properties of Anatase/Brookite TiO2 Photocatalyst. Adv. Mater. Res. 2016, 1133 , 527–531. DOI: 10.4028/www.scientific.net/AMR.1133.527.
  • Zhang, W. ; Xu, C. ; Liu, E. ; Fan, J. ; Hu, X. Facile Strategy to Construction Z-Scheme ZnCo2O4/g-C3N4 Photocatalyst with Efficient H2 Evolution Activity. Appl. Surf. Sci. 2020, 515 , 146039. DOI: 10.1016/j.apsusc.2020.146039.
  • Zhao, Y. ; Shi, H. ; Yang, D. ; Fan, J. ; Hu, X. ; Liu, E. Fabrication of a Sb2MoO6/gC3N4 Photocatalyst for Enhanced RhB Degradation and H2 Generation. J. Phys. Chem. C 2020, 124 , 13771–13778. DOI: 10.1021/acs.jpcc.0c03209.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.