214
Views
2
CrossRef citations to date
0
Altmetric
Articles

Application of ultrasonics for nanosizing drugs and drug formulations

, &
Pages 1587-1602 | Received 25 Aug 2020, Accepted 05 Jan 2021, Published online: 10 Feb 2021

References

  • Ku, M. S.; Dulin, W. A Biopharmaceutical Classification-Based Right-First-Time Formulation Approach to Reduce Human Pharmacokinetic Variability and Project Cycle Time from First-In-Human to Clinical Proof-Of-Concept. Pharm. Dev. Technol. 2012, 17, 285–302. DOI: 10.3109/10837450.2010.535826.
  • Nikolakakis, I.; Partheniadis, I. Self-Emulsifying Granules and Pellets: Composition and Formation Mechanisms for Instant or Controlled Release. Pharmaceutics 2017, 9, 50. DOI: 10.3390/pharmaceutics9040050.
  • Loftsson, T.; Brewster, M. E. Pharmaceutical Applications of Cyclodextrins. 1. Drug Solubilization and Stabilization. J. Pharm. Sci. 1996, 85, 1017–1025. DOI: 10.1021/js950534b.
  • van der Merwe, J.; Steenekamp, J.; Steyn, D.; Hamman, J. The Role of Functional Excipients in Solid Oral Dosage Forms to Overcome Poor Drug Dissolution and Bioavailability. Pharmaceutics 2020, 12, 393. DOI: 10.3390/pharmaceutics12050393.
  • Noyes, A. A.; Whitney, W. R. The Rate of Solution of Solid Substances in Their Own Solutions. J. Am. Chem. Soc. 1897, 19, 930–934. DOI: 10.1021/ja02086a003.
  • Da Silva, F. L. O.; Marques, M. B. D. F.; Kato, K. C.; Carneiro, G. Nanonization Techniques to Overcome Poor Water-Solubility with Drugs. Expert Opin. Drug Discov. 2020, 15, 853–812. DOI: 10.1080/17460441.2020.1750591.
  • Müller, R. H.; Jacobs, C.; Kayser, O. Nanosuspensions as Particulate Drug Formulations in Therapy. Rationale for Development and What We Can Expect for the Future. Adv. Drug Deliv. Rev. 2001, 47, 3–19. DOI: 10.1016/S0169-409X(00)00118-6.
  • Nakach, M.; Authelin, J. R.; Perrin, M. A.; Lakkireddy, H. R. Comparison of High Pressure Homogenization and Stirred Bead Milling for the Production of Nano-Crystalline Suspensions. Int. J. Pharm. 2018, 547, 61–71. DOI: 10.1016/j.ijpharm.2018.05.042.
  • Yadav, K. S.; Kale, K. High Pressure Homogenizer in Pharmaceuticals: Understanding Its Critical Processing Parameters and Applications. J. Pharm. Innov. 2020, 15, 690–701. DOI: 10.1007/s12247-019-09413-4.
  • Peltonen, L.; Hirvonen, J. Pharmaceutical Nanocrystals by Nanomilling: Critical Process Parameters, Particle Fracturing and Stabilization Methods. J. Pharm. Pharmacol. 2010, 62, 1569–1579. DOI: 10.1111/j.2042-7158.2010.01022.x.
  • Van Eerdenbrugh, B.; Van den Mooter, G.; Augustijns, P. Top-down Production of Drug Nanocrystals: Nanosuspension Stabilization, Miniaturization and Transformation into Solid Products. Int. J. Pharm. 2008, 364, 64–75. DOI: 10.1016/j.ijpharm.2008.07.023.
  • Michael, F. M.; Khalid, M.; Ratnam, C. T.; Rashmi, W.; Hoque, M. E.; Ketabchi, M. R. Nanohydroxyapatite Synthesis Using Optimized Process Parameters for Load-Bearing Implant. Bull. Mater. Sci. 2016, 39, 133–145. DOI: 10.1007/s12034-015-1120-8.
  • Modarres-Gheisari, S. M. M.; Gavagsaz-Ghoachani, R.; Malaki, M.; Safarpour, P.; Zandi, M. Ultrasonic Nano-emulsification – A Review. Ultrason. Sonochem. 2019, 52, 88–105. DOI: 10.1016/j.ultsonch.2018.11.005.
  • Shah, S. M. H.; Ullah, F.; Khan, S.; Shah, S. M. M.; Sadiq, A. Combinative Precipitation Ultrasonication Approach for Fabrication for Stable Artemisinin Nanosuspension. Am-Eurasian J. Agric. Environ. Sci. 2016, 16, 390–401.
  • Sivakumar, M.; Tang, S. Y.; Tan, K. W. Cavitation Technology – a Greener Processing Technique for the Generation of Pharmaceutical Nanoemulsions. Ultrason. Sonochem. 2014, 21, 2069–2083. DOI: 10.1016/j.ultsonch.2014.03.025.
  • Möschwitzer, J. P. Drug Nanocrystals in the Commercial Pharmaceutical Development Process. Int. J. Pharm. 2013, 453, 142–156. DOI: 10.1016/j.ijpharm.2012.09.034.
  • Patel, V. R.; Agrawal, Y. K. Nanosuspension: An Approach to Enhance Solubility of Drugs. J. Adv. Pharm. Technol. Res. 2011, 2, 81–87. DOI: 10.4103/2231-4040.82950.
  • Salazar, J.; Ghanem, A.; Müller, R. H.; Möschwitzer, J. P. Nanocrystals: Comparison of the Size Reduction Effectiveness of a Novel Combinative Method with Conventional Top-down Approaches. Eur. J. Pharm. Biopharm. 2012, 81, 82–90. DOI: 10.1016/j.ejpb.2011.12.015.
  • Kiss, A. A.; Geertman, R.; Wierschem, M.; Skiborowski, M.; Gielen, B.; Jordens, J.; John, J. J.; Van Gerven, T. Ultrasound-Assisted Emerging Technologies for Chemical Processes. J. Chem. Technol. Biotechnol. 2018, 93, 1219–1227. DOI: 10.1002/jctb.5555.
  • Thompson, L. H.; Doraiswamy, L. K. Sonochemistry: Science and Engineering. Ind. Eng. Chem. Res. 1999, 38, 1215–1249. DOI: 10.1021/ie9804172.
  • Zhang, K.; Park, B.-J.; Fang, F.-F.; Choi, H. J. Sonochemical Preparation of Polymer Nanocomposites. Molecules 2009, 14, 2095–2110. DOI: 10.3390/molecules140602095.
  • Kaci, M.; Arab-Tehrany, E.; Desjardins, I.; Banon-Desobry, S.; Desobry, S. Emulsifier Free Emulsion: Comparative Study between a New High Frequency Ultrasound Process and Standard Emulsification Processes. J. Food Eng. 2017, 194, 109–118. DOI: 10.1016/j.jfoodeng.2016.09.006.
  • Pingali, K. C.; Rockstraw, D. A.; Deng, S. Silver Nanoparticles from Ultrasonic Spray Pyrolysis of Aqueous Silver Nitrate. Aerosol Sci. Technol. 2005, 39, 1010–1014. DOI: 10.1080/02786820500380255.
  • Rudolf, R.; Majerič, P.; Tomić, S.; Shariq, M.; Ferčec, U.; Budič, B.; Friedrich, B.; Vučević, D.; Čolić, M. Morphology, Aggregation Properties, Cytocompatibility, and anti-Inflammatory Potential of Citrate-Stabilized AuNPs Prepared by Modular Ultrasonic Spray Pyrolysis. J. Nanomater. 2017, 2017, 1–17. DOI: 10.1155/2017/9365012.
  • Joshi, B.; Kaur, J.; Khan, E.; Kumar, A.; Joshi, A. Ultrasonic Atomizer Driven Development of Doxorubicin-Chitosan Nanoparticles as Anticancer Therapeutics: Evaluation of Anionic Cross-Linkers. J. Drug Delivery Sci. Technol. 2020, 57, 101618. DOI: 10.1016/j.jddst.2020.101618.
  • Bhargava, N.; Mor, R. S.; Kumar, K.; Sharanagat, V. S. Advances in Application of Ultrasound in Food Processing: A Review. Ultrason. Sonochem. 2021, 70, 105293. DOI: 10.1016/j.ultsonch.2020.105293.
  • Eller, A. I. Growth of Bubbles by Rectified Diffusion. J. Acoust. Soc. Am. 1969, 46, 1246–1250. DOI: 10.1121/1.1911846.
  • Ashokkumar, M. The Characterization of Acoustic Cavitation Bubbles—An overview. Ultrason. Sonochem. 2011, 18, 864–872. DOI: 10.1016/j.ultsonch.2010.11.016.
  • Ashokkumar, M.; Bhaskaracharya, R.; Kentish, S.; Lee, J.; Palmer, M.; Zisu, B. The Ultrasonic Processing of Dairy Products—An Overview. Dairy Sci. Technol. 2010, 90, 147–168. DOI: 10.1051/dst/2009044.
  • Yasui, K. Influence of Ultrasonic Frequency on Multibubble Sonoluminescence. J. Acoust. Soc. Am. 2002, 112, 1405–1413. DOI: 10.1121/1.1502898.
  • Santos, H. M.; Capelo, J. L. Trends in Ultrasonic-Based Equipment for Analytical Sample Treatment. Talanta 2007, 73, 795–802. DOI: 10.1016/j.talanta.2007.05.039.
  • Delmas, H.; Barthe, L. 25 – Ultrasonic Mixing, Homogenization, and Emulsification in Food Processing and Other Applications. In Power Ultrasonics; Gallego-Juárez, J.A., Graff, K. F., Eds.; Woodhead Publishing: Oxford, 2015; pp 757–791.
  • Mason, T. J.; Lorimer, J. P. Sonochemistry (Theory, Applications and Uses of Ultrasound in Chemistry). Ellis Horwood Limited: Chichester and John Wiley and Sons: New York, 1988.
  • Kimura, T.; Sakamoto, T.; Leveque, J.-M.; Sohmiya, H.; Fujita, M.; Ikeda, S.; Ando, T. Standardization of Ultrasonic Power for Sonochemical Reaction. Ultrason. Sonochem. 1996, 3, S157–S161. DOI: 10.1016/S1350-4177(96)00021-1.
  • Hasegawa, T.; Yosioka, K. Acoustic‐Radiation Force on a Solid Elastic Sphere. J. Acoust. Soc. Am. 1969, 46, 1139–1143. DOI: 10.1121/1.1911832.
  • Zieniuk, J.; Evans, B. The Influence of Thermal Parameters on Making Ultrasonic Power Measurements by a Calorimetric Method. Acta Acust. United Ac. 1971, 25, 47–52.
  • Pugin, B. Qualitative Characterization of Ultrasound Reactors for Heterogeneous Sonochemistry. Ultrasonics 1987, 25, 49–55. DOI: 10.1016/0041-624X(87)90012-6.
  • Kiani, H.; Zhang, Z.; Delgado, A.; Sun, D.-W. Ultrasound Assisted Nucleation of Some Liquid and Solid Model Foods during Freezing. Food Res. Int. 2011, 44, 2915–2921. DOI: 10.1016/j.foodres.2011.06.051.
  • Nascentes, C. C.; Korn, M.; Sousa, C. S.; Arruda, M. A. Z. Use of Ultrasonic Baths for Analytical Applications: A New Approach for Optimisation Conditions. J. Braz. Chem. Soc. 2001, 12, 57–63. DOI: 10.1590/S0103-50532001000100008.
  • Liu, Z.; Yang, L. Antisolvent Precipitation for the Preparation of High Polymeric Procyanidin Nanoparticles under Ultrasonication and Evaluation of Their Antioxidant Activity in Vitro. Ultrason. Sonochem. 2018, 43, 208–218. DOI: 10.1016/j.ultsonch.2018.01.019.
  • Sonics & Materials, I. User’s Guide: High Intensity Ultrasonic Processor Microprocessor Controlled, 2003.
  • Ishtiaq, F.; Farooq, R.; Farooq, U.; Farooq, A.; Siddique, M.; Shah, S. H.; Shaheen, M. Application of Ultrasound in Pharmaceutics. World Appl. Sci. J. 2009, 6, 1818–4952. 886–893.
  • Abbas, S.; Hayat, K.; Karangwa, E.; Bashari, M.; Zhang, X. An Overview of Ultrasound-Assisted Food-Grade Nanoemulsions. Food Eng. Rev. 2013, 5, 139–157. DOI: 10.1007/s12393-013-9066-3.
  • Nii, S. Ultrasonic Atomization. In Handbook of Ultrasonics and Sonochemistry; Ashokkumar, M., Ed.; Springer: Singapore, 2016; pp 1–19.
  • Dhanalakshmi, N. P.; Nagarajan, R. Ultrasonic Intensification of the Chemical Degradation of Methyl Violet: An Experimental Study. Int. J. Chem. Mol. Eng. 2011, 5(11), 1019–1024.
  • Sonics & Materials, I. Cavitation erosion of ultrasonic probes. https://www.sonics.com/site/assets/files/2962/cavitation_erosion_of_ultrasonic_probes.pdf
  • SW-846 Test Method 3550C: Ultrasonic Extraction. Agency, U.S.E.P., Ed., 2007.
  • Bull, V.; Rivens, I.; ter Haar, G. Cavitation Thresholds and Why to Be Wary! J. Acoust. Soc. Am. 2012, 131, 3383–3383. DOI: 10.1121/1.4708756.
  • Hielscher, T. Ultrasonic Production of Nano-Size Dispersions and Emulsions. ENS: Paris, France, 2005; pp. 138–143.
  • Amoedo, L.; Luis Capelo, J.; Lavilla, I.; Bendicho, C. Ultrasound-Assisted Extraction of Lead from Solid Samples: A New Perspective on the Slurry-Based Sample Preparation Methods for Electrothermal Atomic Absorption Spectrometry. J. Anal. At. Spectrom. 1999, 14, 1221–1226. DOI: 10.1039/a902624j.
  • Cabrera-Trujillo, M.; Sotelo-Díaz, I.; Quintanilla-Carvajal, M. X. Effect of Amplitude and Pulse in Low Frequency Ultrasound on Oil/Water Emulsions. Dyna 2016, 83, 63. DOI: 10.15446/dyna.v83n199.56192.
  • Bhangu, S. K.; Ashokkumar, M.; Cavalieri, F. Synthesis of Bio-Functional Nanoparticles from Sono-Responsive Amino Acids Using High Frequency Ultrasound. Ultrason. Sonochem. 2020, 63, 104967. DOI: 10.1016/j.ultsonch.2020.104967.
  • Hielscher, K. Ultrasonic Milling and Dispersing Technology for Nano-Particles. MRS Proc. 2012, 1479, 21–26. DOI: 10.1557/opl.2012.1592.
  • García-Gurrola, A.; Rincón, S.; Escobar-Puentes, A. A.; Zepeda, A.; Pérez-Robles, J. F.; Martínez-Bustos, F. Synthesis and succinylation of starch Nanoparticles by Means of a Single Step Using Sonochemical energy. Ultrason. Sonochem. 2019, 56, 458–465. DOI: 10.1016/j.ultsonch.2019.04.035.
  • Bang, S. H.; Yu, Y. M.; Hwang, I. C.; Park, H. J. Formation of Size-Controlled Nano Carrier Systems by Self-Assembly. J. Microencapsul. 2009, 26, 722–733. DOI: 10.3109/02652040902726994.
  • Alizadeh, S.; Fallah, N.; Nikazar, M. An Ultrasonic Method for the Synthesis, Control and Optimization of CdS/TiO2 Core–Shell Nanocomposites. RSC Adv. 2019, 9, 4314–4324. DOI: 10.1039/C8RA10155H.
  • Taurozzi, J. S.; Hackley, V. A.; Wiesner, M. R. Ultrasonic Dispersion of Nanoparticles for Environmental, Health and Safety assessment-issues and recommendations. Nanotoxicology 2011, 5, 711–729. DOI: 10.3109/17435390.2010.528846.
  • Muthukumaran, S.; Kentish, S. E.; Stevens, G. W.; Ashokkumar, M. Application of Ultrasound in Membrane Separation Processes: A Review. Rev. Chem. Eng. 2006, 22, 155–194. DOI: 10.1515/REVCE.2006.22.3.155.
  • Zhou, Y.; Shi, J.; Cui, J.; Deng, C. X. Effects of Extracellular Calcium on Cell Membrane Resealing in Sonoporation. J Control Release 2008, 126, 34–43. DOI: 10.1016/j.jconrel.2007.11.007.
  • Muthukumaran, S.; Kentish, S.; Stevens, G.; Ashokkumar, M. Application of Ultrasound in Membrane Separation Processes: A Review. Rev. Chem. Eng. 2006, 22, 155–194. DOI: 10.1515/REVCE.2006.22.3.155.
  • Santos, H. M.; Lodeiro, C.; Capelo-Martinez, J.-L. The Power of Ultrasound in Ultrasound in Chemistry: Analytical Applications; Wiley-VCH: Weinheim, 2009.
  • Bondy, C.; Söllner, K. On the Mechanism of Emulsification by Ultrasonic Waves. Trans. Faraday Soc. 1935, 31, 835–843. DOI: 10.1039/TF9353100835.
  • Lorimer, J. P.; Mason, T. J. Sonochemistry. Part 1—The Physical Aspects. Chem. Soc. Rev. 1987, 16, 239–274. DOI: 10.1039/CS9871600239.
  • Contamine, R. F.; Wilhelm, A. M.; Berlan, J.; Delmas, H. Power Measurement in Sonochemistry. Ultrason. Sonochem. 1995, 2, S43–S47. DOI: 10.1016/1350-4177(94)00010-P.
  • Ige, P. P.; Baria, R. K.; Gattani, S. G. Fabrication of Fenofibrate Nanocrystals by Probe Sonication Method for Enhancement of Dissolution Rate and Oral Bioavailability. Colloid. Surface B 2013, 108, 366–373. DOI: 10.1016/j.colsurfb.2013.02.043.
  • Iurian, S.; Tomuţa, I.; Rus, L.; Achim, M.; Leucuta, S. E. Optimization of the Sonication Process for Meloxicam Nanocrystals Preparation. Clujul Med. 2015, 88, 366–372. DOI: 10.15386/cjmed-445.
  • Liu, D.; Xu, H.; Tian, B.; Yuan, K.; Pan, H.; Ma, S.; Yang, X.; Pan, W. Fabrication of Carvedilol Nanosuspensions through the Anti-Solvent Precipitation-Ultrasonication Method for the Improvement of Dissolution Rate and Oral Bioavailability. AAPS PharmSciTech. 2012, 13, 295–304. DOI: 10.1208/s12249-011-9750-7.
  • He, S.; Yang, H.; Zhang, R.; Li, Y.; Duan, L. Preparation and in Vitro–in Vivo Evaluation of Teniposide Nanosuspensions. Int. J. Pharm. 2015, 478, 131–137. DOI: 10.1016/j.ijpharm.2014.11.020.
  • Taneja, S.; Shilpi, S.; Khatri, K. Formulation and Optimization of Efavirenz Nanosuspensions Using the Precipitation–Ultrasonication Technique for Solubility Enhancement. Artif. Cells. Nanomed. Biotechnol. 2016, 44, 978–984. DOI: 10.3109/21691401.2015.1008505.
  • Soliman, K. A.; Ibrahim, H. K.; Ghorab, M. M. Effects of Different Combinations of Nanocrystallization Technologies on Avanafil Nanoparticles: in Vitro, in Vivo and Stability Evaluation. Int. J. Pharm. 2017, 517, 148–156. DOI: 10.1016/j.ijpharm.2016.12.012.
  • Alshweiat, A.; Katona, G.; Csóka, I.; Ambrus, R. Design and Characterization of Loratadine Nanosuspension Prepared by Ultrasonic-Assisted Precipitation. Eur. J. Pharm. Sci. 2018, 122, 94–104. DOI: 10.1016/j.ejps.2018.06.010.
  • Zhang, H.; Liu, H.; Qi, P.; Wang, S.; Hu, H.; Gou, J.; Zhang, Y.; He, H.; Tang, X.; Yin, T.; et al. Enhanced the Bioavailability of Sterile 20(S)-Protopanaxadiol Nanocrystalline Suspension Coated by Bovine Serum Albumin for Intramuscular Injection: in Vitro and in Vivo Evaluation. AAPS PharmSciTech. 2019, 20, 305. DOI: 10.1208/s12249-019-1498-5.
  • Gulsun, T.; Borna, S. E.; Vural, I.; Sahin, S. Preparation and Characterization of Furosemide Nanosuspensions. J. Drug Delivery Sci. Technol. 2018, 45, 93–100. DOI: 10.1016/j.jddst.2018.03.005.
  • Baird, J. A.; Van Eerdenbrugh, B.; Taylor, L. S. A Classification System to Assess the Crystallization Tendency of Organic Molecules from Undercooled melts. J. Pharm. Sci. 2010, 99, 3787–3806. DOI: 10.1002/jps.22197.
  • Dincer, T. D.; Zisu, B. Sonocrystallization of Lactose. In Handbook of Ultrasonics and Sonochemistry; Ashokkumar, M., Ed.; Springer: Singapore, 2016; pp 1–32.
  • Bhagat, C.; Singh, S. K.; Verma, P. R. P.; Singh, N.; Verma, S.; Ahsan, M. N. Crystalline and Amorphous Carvedilol-Loaded Nanoemulsions: Formulation Optimisation Using Response Surface Methodology. J. Exp. Nanosci. 2013, 8, 971–992. DOI: 10.1080/17458080.2011.630037.
  • Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B. A.; Thiessen, P. A.; Yu, B.; et al. PubChem 2019 Update: Improved Access to Chemical Data. Nucleic Acids Res. 2019, 47, D1102–D1109. DOI: 10.1093/nar/gky1033.
  • Sathigari, S. K.; Radhakrishnan, V. K.; Davis, V. A.; Parsons, D. L.; Babu, R. J. Amorphous-State Characterization of efavirenz-polymer Hot-melt Extrusion Systems for Dissolution Enhancement . J. Pharm. Sci. 2012, 101, 3456–3464. DOI: 10.1002/jps.23125.
  • Ramisetty, K. A.; Rasmuson, Å. C. Controlling the Product Crystal Size Distribution by Strategic Application of Ultrasonication. Cryst. Growth Des. 2018, 18, 1697–1709. DOI: 10.1021/acs.cgd.7b01619.
  • Bose, S.; Du, Y.; Takhistov, P.; Michniak-Kohn, B. Formulation Optimization and Topical Delivery of Quercetin from Solid Lipid Based Nanosystems. Int. J. Pharm. 2013, 441, 56–66. DOI: 10.1016/j.ijpharm.2012.12.013.
  • Kumar, V. V.; Chandrasekar, D.; Ramakrishna, S.; Kishan, V.; Rao, Y. M.; Diwan, P. V. Development and Evaluation of Nitrendipine Loaded Solid Lipid Nanoparticles: Influence of Wax and Glyceride Lipids on Plasma Pharmacokinetics. Int. J. Pharm. 2007, 335, 167–175. DOI: 10.1016/j.ijpharm.2006.11.004.
  • Carafa, M.; Marianecci, C.; Salvatorelli, M.; Di Marzio, L.; Cerreto, F.; Lucania, G.; Santucci, E. Formulations of Retinyl Palmitate Included in Solid Lipid Nanoparticles: Characterization and Influence on Light-Induced Vitamin Degradation. J. Drug Delivery Sci. Technol. 2008, 18, 119–124. DOI: 10.1016/S1773-2247(08)50019-0.
  • Abdelbary, G.; Fahmy, R. H. Diazepam-Loaded Solid Lipid Nanoparticles: Design and Characterization. AAPS PharmSciTech. 2009, 10, 211–219. DOI: 10.1208/s12249-009-9197-2.
  • Das, S.; Ng, W. K.; Kanaujia, P.; Kim, S.; Tan, R. B. Formulation Design, Preparation and Physicochemical Characterizations of Solid Lipid Nanoparticles Containing a Hydrophobic Drug: Effects of Process Variables. Colloid. Surf. B. 2011, 88, 483–489. DOI: 10.1016/j.colsurfb.2011.07.036.
  • Shah, B.; Khunt, D.; Bhatt, H.; Misra, M.; Padh, H. Application of Quality by Design Approach for Intranasal Delivery of Rivastigmine Loaded Solid Lipid Nanoparticles: Effect on Formulation and Characterization Parameters. Eur. J. Pharm. Sci. 2015, 78, 54–66. DOI: 10.1016/j.ejps.2015.07.002.
  • Dudhipala, N.; Veerabrahma, K. Candesartan Cilexetil Loaded Solid Lipid Nanoparticles for Oral Delivery: Characterization, Pharmacokinetic and Pharmacodynamic Evaluation. Drug Deliv. 2016, 23, 395–404. DOI: 10.3109/10717544.2014.914986.
  • Dudhipala, N.; Veerabrahma, K. Improved anti-Hyperlipidemic Activity of Rosuvastatin Calcium via Lipid Nanoparticles: Pharmacokinetic and Pharmacodynamic Evaluation. Eur. J. Pharm. Biopharm. 2017, 110, 47–57. DOI: 10.1016/j.ejpb.2016.10.022.
  • Prajapati, J. B.; Katariya, H.; Patel, R. Peyer'e Patch Targeting of Isradipine Loaded Solid Lipid Nanoparticles: It’s Cellular Uptake Study. J. Drug Delivery Sci. Technol. 2018, 43, 318–326. DOI: 10.1016/j.jddst.2017.10.017.
  • de Meneses, A. C.; Marques, E. B. P.; Leimann, F. V.; Gonçalves, O. H.; Ineu, R. P.; de Araújo, P. H. H.; de Oliveira, D.; Sayer, C. Encapsulation of Clove Oil in Nanostructured Lipid Carriers from Natural Waxes: Preparation, Characterization and in Vitro Evaluation of the Cholinesterase Enzymes. Colloids Surf, A. 2019, 583, 123879. DOI: 10.1016/j.colsurfa.2019.123879.
  • Badamaranahalli, S. S.; Kopparam, M.; Bhagawati, S. T.; Durg, S. Embelin Lipid Nanospheres for Enhanced Treatment of Ulcerative Colitis – Preparation, Characterization and in Vivo Evaluation. Eur. J. Pharm. Sci. 2015, 76, 73–82. DOI: 10.1016/j.ejps.2015.05.003.
  • Ghate, V. M.; Lewis, S. A.; Prabhu, P.; Dubey, A.; Patel, N. Nanostructured Lipid Carriers for the Topical Delivery of Tretinoin. Eur. J. Pharm. Biopharm. 2016, 108, 253–261. DOI: 10.1016/j.ejpb.2016.07.026.
  • Alam, S.; Aslam, M.; Khan, A.; Imam, S. S.; Aqil, M.; Sultana, Y.; Ali, A. Nanostructured Lipid Carriers of Pioglitazone for Transdermal Application: From Experimental Design to Bioactivity Detail. Drug Deliv. 2016, 23, 601–609. DOI: 10.3109/10717544.2014.923958.
  • de Sousa Marcial, S. P.; Carneiro, G.; Leite, E. A. Lipid-Based Nanoparticles as Drug Delivery System for Paclitaxel in Breast Cancer Treatment. J. Nanopart. Res. 2017, 19, 340. DOI: 10.1007/s11051-017-4042-0.
  • Kim, M. S.; Haney, M. J.; Zhao, Y.; Mahajan, V.; Deygen, I.; Klyachko, N. L.; Inskoe, E.; Piroyan, A.; Sokolsky, M.; Okolie, O.; et al. Development of Exosome-Encapsulated Paclitaxel to Overcome MDR in Cancer Cells. Nanomedicine 2016, 12, 655–664. DOI: 10.1016/j.nano.2015.10.012.
  • Beltrán, J. D.; Ricaurte, L.; Estrada, K. B.; Quintanilla-Carvajal, M. X. Effect of Homogenization Methods on the Physical Stability of Nutrition Grade Nanoliposomes Used for Encapsulating High Oleic Palm Oil. Lwt. 2020, 118, 108801. DOI: 10.1016/j.lwt.2019.108801.
  • Khan, M. I.; Madni, A.; Hirvonen, J.; Peltonen, L. Ultrasonic Processing Technique as a Green Preparation Approach for Diacerein-Loaded Niosomes. AAPS PharmSciTech. 2017, 18, 1554–1563. DOI: 10.1208/s12249-016-0622-z.
  • Diril, M.; Karasulu, H. Y.; Toskas, M.; Nikolakakis, I. Development and Permeability Testing of Self-Emulsifying Atorvastatin Calcium Pellets and Tablets of Compressed Pellets. Processes 2019, 7, 365. DOI: 10.3390/pr7060365.
  • Verma, P.; Meher, J. G.; Asthana, S.; Pawar, V. K.; Chaurasia, M.; Chourasia, M. K. Perspectives of Nanoemulsion Assisted Oral Delivery of Docetaxel for Improved Chemotherapy of Cancer. Drug Deliv. 2016, 23, 479–488. DOI: 10.3109/10717544.2014.920430.
  • Tang, S. Y.; Shridharan, P.; Sivakumar, M. Impact of Process Parameters in the Generation of Novel Aspirin Nanoemulsions-Comparative Studies Between Ultrasound Cavitation and Microfluidizer. Ultrason. Sonochem. 2013, 20, 485–497. DOI: 10.1016/j.ultsonch.2012.04.005.
  • Alshweiat, A.; Ambrus, R.; Katona, G. Pannonhalminé Csóka, I. QbD Based Control Strategy of Loratadine Nanosuspensions and Dry Nanoparticles Stabilized by Soluplus®. Farmacia 2019, 67, 729–735. DOI: 10.31925/farmacia.2019.4.23.
  • Soroushnai, A.; Ganji, F.; Vasheghani-Farahani, E.; Mobedi, H. Development and Evaluation of an anti-Epileptic Oral Fast-Dissolving Film with Enhanced Dissolution and in Vivo Permeation. Curr. Drug Deliv. 2018, 15, 1294–1304. DOI: 10.2174/1567201815666180723115600.
  • Abdel-Salam, F. S.; Elkheshen, S. A.; Mahmoud, A. A.; Ammar, H. O. Diflucortolone Valerate Loaded Solid Lipid Nanoparticles as a Semisolid Topical Delivery System. Bull. Fac. Pharm. Cairo Univ. 2016, 54, 1–7. DOI: 10.1016/j.bfopcu.2015.11.002.
  • Bartos, C.; Kukovecz, Á.; Ambrus, R.; Farkas, G.; Radacsi, N.; Szabó-Révész, P. Comparison of Static and Dynamic Sonication as Process Intensification for Particle Size Reduction Using a Factorial Design. Chem. Eng. Process 2015, 87, 26–34. DOI: 10.1016/j.cep.2014.10.015.
  • Gala, R. P.; Khan, I.; Elhissi, A. M.; Alhnan, M. A. A Comprehensive Production Method of Self-Cryoprotected Nano-Liposome Powders. Int. J. Pharm. 2015, 486, 153–158. DOI: 10.1016/j.ijpharm.2015.03.038.
  • Ngan, C. L.; Basri, M.; Lye, F. F.; Fard Masoumi, H. R.; Tripathy, M.; Karjiban, R. A.; Abdul-Malek, E. Comparison of Process Parameter Optimization Using Different Designs in Nanoemulsion-Based Formulation for Transdermal Delivery of Fullerene. Int. J. Nanomedicine 2014, 9, 4375–4386.
  • Varshosaz, J.; Minayian, M.; Moazen, E. Enhancement of Oral Bioavailability of Pentoxifylline by Solid Lipid Nanoparticles. J. Liposome Res. 2010, 20, 115–123. DOI: 10.3109/08982100903161456.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.