583
Views
33
CrossRef citations to date
0
Altmetric
Articles

Low-cost adsorbents for environmental pollution control: a concise systematic review from the prospective of principles, mechanism and their applications

ORCID Icon
Pages 1612-1633 | Received 26 Aug 2020, Accepted 05 Jan 2021, Published online: 07 Feb 2021

References

  • Tony, M. A.; Zhao, Y. Q.; Fu, J.; Tayeb, A. Conditioning of Aluminium-Based Water Treatment Sludge With Fenton's Reagent: Effectiveness and Optimising Study to Improve Dewaterability. Chemosphere 2008, 72, 673–677.
  • Schwantes, D.; Gonçalves, A. C.; Jr., Casarin, J.; Pinheiro, A.; Pinheiro, I. G.; Coelho, G. F. Removal of Cr(III) from Contaminated Water Using Industrial Waste of the Cassava as Natural Adsorbents. African J. Agri. Res. 2015, 10, 4241–4251.
  • Tayeb, A.; Tony, M. A.; Mansour, S. Application of Box–Behnken Factorial Design for Parameters Optimization of Basic Dye Removal Using Nano-Hematite photo-Fenton Tool. Appl. Water Sci. 2018, 8, 138.
  • Tayeb, A.; Tony, M. A.; Ismaeel, E. Engineered Nanostructured ZnO for Water Remediation: Operational Parameters Effect, Box–Behnken Design Optimization and Kinetic Determinations. Appl. Water Sci. 2019, 9, 43. DOI: 10.1007/s13201-019-0921-0.
  • Tony, M. A.; Parker, H. L.; Clark, J. H. Evaluating Algibon Adsorbent and Adsorption Kinetics for Launderette Water Treatment: Towards Sustainable Water Management. Water Environ. J. 2019, 33, 401–408.
  • Ashour, E.; Tony, M. A. Eco-Friendly Removal of Hexavalent Chromium from Aqueous Solution Using Natural Clay Mineral: activation and Modification Effects. SN Appl. Sci. 2020, 2, DOI: 10.1007/s42452-020-03873-x
  • Bonne, P.; Beerendonk, E. F.; Van der Hoek, J. P.; Hofman, J. Retention of Herbicides and Pesticides in Relation to Aging of RO Membranes. Desalination 2000, 132, 189–193.
  • Tony, M. A.; Mansour, S. Microwave-Assisted Catalytic Oxidation of Methomyl Pesticide by Cu/Cu2O/CuO Hybrid Nanoparticles as a Fenton-like Source. Int. J. Environ. Sci. Technol. 2020, 17, 161–174. DOI: 10.1007/s13762-019-02436-x.
  • Yagub, M. T.; Sen, T. K.; Afroze, S.; Ang, H. M. Dye and Its Removal from Aqueous Solution by Adsorption: A Review. Adv Colloid Interface Sci. 2014, 209, 172–184.
  • Corada-Fernández, C.; Jiménez-Martínez, J.; Candela, L.; González-Mazo, E.; Lara-Martín, P. A. Occurrence and Spatial Distribution of Emerging Contaminants in the Unsaturated Zone. Case Study: Guadalete River Basin (Cadiz, Spain). Chemosphere 2015, 119, S131–S137. DOI: 10.1016/j.chemosphere.2014.04.098.
  • Tony, M. A.; Lin, L. S. Iron Recovery Form Acid Mine Drain Sludge as a Fenton Source for Municipal Wastewater Treatment. Inter. J. Environ. Anal. Chem. 2020, DOI: 10.1080/03067319.2020.1734196.
  • Delgado, N.; Capparelli, A.; Navarro, A.; Marino, D. Pharmaceutical Emerging Pollutants Removal from Water Using Powdered Activated Carbon: Study of Kinetics and Adsorption Equilibrium. J. Environ. Manag. 2019, 236, 301–308. DOI: 10.1016/j.jenvman.2019.01.116.
  • Tony, M. A.; P. J.; Purcell, P. J.; Zhao, Y. Q. Oil Refinery Wastewater Treatment Using Physicochemical, Fenton and Photo-Fenton Oxidation Processes. J. Environ. Sci. Health A 2012, 47, 435–440. DOI: 10.1080/10934529.2012.646136.
  • Tony, M. A.; Mansour, S. Sunlight-Driven Organic Phase Change Material-Embedded Nanofiller for Latent Heat Solar Energy Storage, Inter. Int. J. Environ. Sci. Technol. 2020, 17, 709–720. 2020). DOI: 10.1007/s13762-019-02507-z.
  • Tayeb, A. M.; Farouq, R.; Mohamed, O.; Tony, M. A. Oil Spill Clean-up Using Combined Sorbents: A Comparative Investigation and Design Aspects, Inter. J. Environ. Anal. Chem. 2020, 100, 311–323. DOI: 10.1080/03067319.2019.1636976.
  • Tony, M. A.; Lin, L. S. Performance of Acid Mine Drainage Sludge as an Innovative Catalytic Oxidation Source for Treating Vehicle Washing Wastewater. J. Disp. Sci. Technol. 2020, DOI: 10.1080/01932691.2020.1813592.
  • Van der Bruggen, B.; Boussu, K.; De Vreese, I.; Van Baelen, G.; Willemse, F.; Goedeme, D.; Colen, W. (2005) Industrial Process Water Recycling: principles and Examples. Environ. Prog. Sustain. Energy 2005, 24, 417–425.
  • Chakraborty, R.; Asthana, A.; Singh, A.; Jain, B.; Bin Hasan, A. Adsorption of Heavy Metal Ions by Various Low-Cost Adsorbents: A Review. Susan. Inter. J. Environ. Anal. Chem. 2020, DOI: 10.1080/03067319.2020.1722811.
  • Tony, M. A.; Mansour, S.; Tayeb, A.; Purcell, P. J. Use of a Fenton-like Process Based on Nano-Haematite to Treat Synthetic Wastewater Contaminated by Phenol: process Investigation and Statistical Optimization. Arab. J. Sci. Eng. 2018, 43, 2227–2235. DOI: 10.1007/s13369-017-2632-x.
  • Sarmadi, M.; Foroughi, M.; Najafi Saleh, H.; Sanaei, D.; Zarei, A.; Ghahrchi, M.; Bazrafshan, E. Efficient Technologies for Carwash Wastewater Treatment: A Systematic Review. Environ. Sci. Poll. Res. 2020, DOI: 10.1007/s11356-020-09741-w.
  • Tony, M. A.; Mansour, S. Removal of the Commercial Reactive Dye Procion Blue MX-7RX from Real Textile Wastewater Using the Synthesized Fe2O3 Nanoparticles at Different Particle Sizes as a Source of Fenton’s Reagent. Nanoscale Adv. 2019, 1, 1362–1371. DOI: 10.1039/C8NA00129D.
  • Tony, M. A.; Bedri, Z. Experimental Design of Photo-Fenton Reactions for the Treatment of Car Wash Wastewater Effluents by Response Surface Methodological Analysis. Adv. Environ. Chem. 2014, 2014, 1–8. DOI: 10.1155/2014/958134.
  • Afroze, S.; Sen, T. K. A Review on Heavy Metal Ions and Dye Adsorption from Water by Agricultural Solid Waste Adsorbents. Water Air Soil Poll. 2018, 229, 225.
  • Tan, K. L.; Hameed, B. H. Insight into the Adsorption Kinetics Models for the Removal of Contaminants from Aqueous Solutions. J. Taiwan Institute Chem. Eng. 2017, 74, 25–48. DOI: 10.1016/j.jtice.2017.01.024.
  • Tony, M. A.; Mansour, S. Synthesis of Nano-Sized Amorphous and Nanocrystalline TiO2 for Photochemical Oxidation of Methomyl Insecticide in Aqueous Media. Water Environ. J. 2020, 34, 239–249. DOI: 10.1111/wej.12522.
  • Hossain, M. A.; Ngo, H. H.; Guo, W. S.; Setiadi, T. Adsorption and Desorption of Copper(II) Ions onto Garden Grass. Bioresour. Technol. 2012, 121, 386–395. DOI: 10.1016/j.biortech.2012.06.119.
  • Paşka, O. M.; Păcurariu, C.; Muntean, S. G. Kinetic and Thermodynamic Studies on Methylene Blue Biosorption Using Corn-Husk. RSC Adv. 2014, 4, 62621–62630. DOI: 10.1039/C4RA10504D.
  • Karimi, S.; Yaraki, M. T.; Karri, R. R. A Comprehensive Review of the Adsorption Mechanisms and Factors Influencing the Adsorption Process from the Perspective of Bioethanol Dehydration. Sus. Energ. Rev. 2019, 107, 535–553. DOI: 10.1016/j.rser.2019.03.025.
  • Sharipova, A.; Aidarova, S.; Bekturganova, N.; Tleuova, A.; Schenderlein, M.; Lygina, O.; Lyubchik, S.; Miller, R. Triclosan as Model System for the Adsorption on Recycled Adsorbent Materials. Coll. Surf. A 2016, 505, 193–196. DOI: 10.1016/j.colsurfa.2016.04.049.
  • Du, Z.; Deng, S.; Liu, D.; Yao, X.; Wang, Y.; Lu, X.; Wang, B.; Huang, J.; Wang, Y.; Xing, B.; Yu, G. Efficient Adsorption of PFOS and F53B from Chrome Plating Wastewater and Their Subsequent Degradation in the Regeneration Process. Chem. Eng. J. 2016, 290, 405–413. DOI: 10.1016/j.cej.2016.01.077.
  • Kim, D.-H.; Yang, J.-S.; Baek, K. Adsorption Characteristics of as(III) and as(V) on Alum Sludge from Water Purification Facilities. Sep. Sci. Technol. 2012, 47, 2211–2217.
  • Parker, H. L.; Budarin, V. L.; Clark, J. H.; Hunt, A. J. Use of Starbon for the Adsorption and Desorption of Phenols. ACS Sustainable Chem. Eng. 2013, 1, 1311–−1318. DOI: 10.1021/sc4001675.
  • Wang, L.; Shi, C.; Wang, L.; Pan, L.; Zhang, X.; Zou, J. Rational Design, Synthesis, Adsorption Principles and Applications of Metal Oxide Adsorbents: A Review. Nanoscale 2020, 12, 4790–4815. DOI: 10.1039/C9NR09274A.
  • Baraka, A. Adsorptive Removal of Tartrazine and Methylene Blue from Wastewater Using Melamine-Formaldehyde-Tartaric Acid Resin (and a Discussion about Pseudo Second Order Model). Desal. Water Treat. 2012, 44, 128–141. DOI: 10.1080/19443994.2012.691778.
  • Srivastava, V. C.; Swamy, M. M.; Mall, I.; Prasad, B.; Mishra, I. Adsorptive Removal of Phenol by Bagasse Fly Ash and Activated Carbon: Equilibrium, Kinetics and Thermodynamics. Coll. Surf. A 2006, 272, 89–104. DOI: 10.1016/j.colsurfa.2005.07.016.
  • Tony, M. A.; Zhao, Y. Q.; Purcell, P. J.; El-Sherbiny, M. F. Evaluating the photo-catalytic application of Fenton's reagent augmented with TiO(2) and ZnO for the mineralization of an oil-water emulsion. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2009, 44, 488–493.
  • Mittal, A.; Thakur, V.; Mittal, J.; Vardhan, H. Process Development for the Removal of Hazardous Anionic Azo Dye Congo Red from Wastewater by Using Hen Feather as Potential Adsorbent. Desal. Water Treat. 2014, 1–11, 227–237.
  • Tony, M. A. Zeolite-Based Adsorbent from Alum Sludge Residue for Textile Wastewater Treatment. Inter. J. Sci. Technol. 2020, 17, 2485–2498.
  • Berrazoum, A.; Marouf, R.; Ouadjenia, F.; Schott, J. Bioadsorption of a Reactive Dye from Aqueous Solution by Municipal Solid Waste. Biotechnol. Rep. (Amst.) 2015, 7, 44–50. Rep, DOI: 10.1016/j.btre.2015.04.005.
  • Tanhaei, B.; Ayati, A.; Lahtinen, M.; Sillanpaa, M. Preparation and Characterization of a Novel Chitosan/Al2O3/Magnetite Nanoparticles Composite Adsorbent for Kinetic, Thermodynamic and Isotherm Studies of Methyl Orange Adsorption. Chem. Eng. J. 2015, 259, 1–10. DOI: 10.1016/j.cej.2014.07.109.
  • Tony, M. A. 2019 Iron Sludge as a Source of Fenton’s Reagent for Textile Wastewater Treatment: Insights on Hydroxyl Free Radicals Induction Sources. IWA Conference, 23–27 June 2019, Delft, The Netherlands,.
  • Tony, M. A.; Lin, L. S. Attenuation of Organics Contamination in Polymers Processing Effluent Using Iron-Based Sludge: Process Optimization and Oxidation Mechanism. Environ. Technol. 2020, DOI: 10.1080/09593330.2020.1803417.
  • Tony, M. A.; Parker, H. L.; Clark, J. H. Treatment of Laundrette Wastewater Using Starbon and Fenton’s Reagent. J. Environ. Sci. Health A 2016, 51, 974–979. DOI: 10.1080/10934529.2016.1191817.
  • Öztürk, A.; Malkoc, E. Adsorptive Potential of Cationic Basic Yellow 2 (BY2) Dye onto Natural Untreated Clay (NUC) from Aqueous Phase: Mass Transfer Analysis, Kinetic and Equilibrium Profile. Appl. Surf. Sci. 2014, 299, 105–115. DOI: 10.1016/j.apsusc.2014.01.193.
  • McKay, G.; H.S. Blair, H. S.; Gardner, J. R. The Adsorption of Dyes in Chitin. III. Intraparticle Diffusion Processes. J. Appl. Polym. Sci. 1982, 27, 3043–3057. DOI: 10.1002/app.1982.070270827.
  • McKay, G.; Otterburn, M. S.; Jamal, A. A. Fuller's Earth and Fired Clay as Adsorbents for Dyestuffs. Water Air Soil Poll. 1985, 24, 307–322. DOI: 10.1007/BF00161790.
  • Ayawei, N.; Ebelegi, A.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. chem 2017, 2017, Article ID 3039817, 1–11. DOI: 10.1155/2017/3039817.
  • Baskaralingam, P.; Pulikesi, M.; Elango, D.; Ramamurthi, V.; Sivanesan, S. (2006). Adsorption of Acid Dye onto Organobentonite. J. Hazard. Mater. 2006, 128, 138–144.
  • Febrianto, J.; Kosasih, A. N.; Sunarso, J.; Ju, Y.-H.; Indraswati, N.; Ismadji, S. Equilibrium and Kinetic Studies in Adsorption of Heavy Metals Using Biosorbent: A Summary of Recent Studies. J. Hazard. Mater. 2009, 162, 616–645. DOI: 10.1016/j.jhazmat.2008.06.042.
  • Ghaedi, M.; Najibi, A.; Hossainian, H.; Shokrollahi, A.; Soylak, M. Kinetic and Equilibrium Study of Alizarin Red Sremoval by Activated Carbon. Toxicol. Environ. Chem 2012, 94, 40–48. DOI: 10.1080/02772248.2011.636043.
  • Afroze, S.; Sen, T.; Ang, M. In C. N. Foster(Ed.), Agricultural Wastes Characteristics, Types and Management, New York: NOVA Publisher, 2015.
  • Tran, H.; You, S.; Hosseini-Bandegharaei, A.; Chao, H. Mistakes and Inconsistencies regarding Adsorption of Contaminants from Aqueous Solutions: A Critical Review. Water Res. 2017, 120, 88–116. DOI: 10.1016/j.watres.2017.04.014.
  • Dubinin, M.; Radushkevich, L. Equation of the Characteristic Curve of Activated Charcoal. Chem. Zentr. 1947, 1, 875.
  • Temkin, M.; Pyzhev, V. Kinetics of Ammonia Synthesis on Promoted Iron Catalysts. Acta Physiochim. URSS 1940, 12, 217–222.
  • Redlich, O.; Peterson, D. L. A Useful Adsorption Isotherm. J. Phys. Chem. 1959, 63, 1024–1024. DOI: 10.1021/j150576a611.
  • Toth, J. State Equations of the Solid-Gas Interface Layers. Acta. Sci. Hung 1971, 69, 311–328.
  • Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. DOI: 10.1021/ja02242a004.
  • Da,Browski, A. Adsorption—from Theory to Practice. Adv. Coll. Inter. Sci. 2001, 93, 135–224.
  • Freundlich, H. Over the Adsorption in Solution. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 385–470.
  • Boparai, H. K.; Joseph, M.; O'Carroll, D. M. Kinetics and Thermodynamics of Cadmium Ion Removal by Adsorption onto Nano Zerovalent Iron Particles. J. Hazard. Mater. 2011, 186, 458–465. DOI: 10.1016/j.jhazmat.2010.11.029.
  • Ayawei, N.; Ekubo, A. T.; Wankasi, D.; Dikio, E. D. Adsorption of congo Red by Ni/Al-CO3: equilibrium, Thermodynamic and Kinetic Studies. Orient. J. Chem. 2015, 31, 1307–1318. DOI: 10.13005/ojc/310307.
  • Hutson, N. D.; Yang, R. T. Theoretical Basis for the DubininRadushkevitch (D-R) Adsorption Isotherm Equation. Adsorption 1997, 3, 189–195. DOI: 10.1007/BF01650130.
  • Liu, J.; Du, M. Study on Preparation Technology of High Absorption Activated Semicoke. N. Chem. Mater. 2014, 42, 82–84.
  • Ho, Y.-S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Proc. Biochem 1999, 34, 451–465. DOI: 10.1016/S0032-9592(98)00112-5.
  • Dawodu, M. O.; Akpomie, K. G. Evaluating the Potential of a Nigerian Soil as an Adsorbent for Tartrazine Dye: Isotherm, Kinetic and Thermodynamic Studies. Alex. Eng. J 2016, 55, 3211–3218. DOI: 10.1016/j.aej.2016.08.008.
  • Otero, R.; Fernandez, J. M.; Ulibarri, M.; Celis Abd, R.; Bruna, F. Adsorption of Nonionic Pesticide S-Metolachlor on Layered Double Hydroxides Intercalated with Dodecylsulfate and Tetradecanedioate Anions. Appl. Clay Sci. 2011, 65–66, 72–79.
  • Cheung, C.; Porter, J. F.; McKay, G. Elovich Equation and Modified Secondorder Equation for Sorption of Cadmium Ions onto Bone Char. J. Chem. Technol. Biotechnol. 2000, 75, 963–970. DOI: 10.1002/1097-4660(200011)75:11<963::AID-JCTB302>3.0.CO;2-Z.
  • Singh, S. K.; Townsend, T.; Mazyck, D.; Boyer, T. Equilibrium and Intraparticle Diffusion of Stabilized Landfill Leachate onto Micro- and Meso-Porous Activated Carbon. Water Res 2012, 46, 491–499. DOI: 10.1016/j.watres.2011.11.007.
  • Jain, A.; Gupta, V. K.; Bhatnagar, A. S. Utilization of Industrial Waste Products as Adsorbents for the Removal of Dyes. J. Hazard. Mater 2003, 101, 31–42.
  • Tony, M. A.; Tayeb, A.; Zhao, Y. Q. An Alternative Arrangement for the Alum Sludge Management: Minimising Waste with Low-Cost Solar Techniques. Amer. J. Chem. Eng 2016, 4, 30–37.
  • Fagbayigbo, B. O.; Opeolu, B. O.; Fatoki, O. Adsorption of Perfluorooctanoic Acid (PFOA) And Perfluorooctane Sulfonate (PFOS) From Water Using Leaf Biomass (Vitis Vinifera) in a Fixed-Bed Column Study. J. Environ. Health Sci. Eng. 2020, 18, 221–233. DOI: 10.1007/s40201-020-00456-1.
  • Anirudhan, T.; Ramachandran, M. Adsorptive Removal of Tannin from Aqueous Solutions by Cationic Surfactant-Modified Bentonite Clay. J. Colloid. Inter. Sci. 2006, 299, 116–124. DOI: 10.1016/j.jcis.2006.01.056.
  • Tony, M. A.; Tayeb, A. The use of solar energy in a low-cost drying system for solid waste management: Concept, design and performance analysis, Eurasia waste management symposium, Istanbul, Turkey 14–16. November, 2011.
  • Oladipo, A.; Abureesh, M. A.; Gazi, M. Bifunctional Composite from Spent “Cyprus Coffee” for Tetracycline Removal and Phenol Degradation: solar-Fenton Process and Artificial Neural network. Int. J. Biol. Macromol. 2016, 90, 89–99.
  • Noreen, S.; Bhatti, H. N.; Nausheen, S.; Sadaf, S.; Ashfaq, M. Batch and Fixed Bed Adsorption Study for the Removal of Drimarine Black CLB Dye from Aqueous Solution Using a Lignocellulosic Waste: A Cost Affective Adsorbent. Ind. Crop. Prod. 2013, 50, 568–579. DOI: 10.1016/j.indcrop.2013.07.065.
  • Ashour, E.; Tony, M. A.; Purcell, P. J. Use of Agriculture-Based Waste for Basic Dye Sorption from Aqueous Solution: Kinetics and Isotherm Studies. Amer. J. Chem. Eng. 2014, 2, 92–98.
  • De Gisi, S.; Lofrano, G.; Grassi, M.; Notarnicola, M. Characteristics and Adsorption Capacities of Low-Cost Sorbents for Wastewater Treatment: A Review. Notarnicola, Sus. Mater. Technol. 2016, 9, 10–40. DOI: 10.1016/j.susmat.2016.06.002.
  • Momina, M.; Shahadat, S.; Isamil, S. Regeneration Performance of Clay-Based Adsorbents for the Removal of Industrial Dyes: A Review. RSC Adv. 2018, 8, 24571–24587. DOI: 10.1039/C8RA04290J.
  • Murcia-Salvador, A.; Pellicer, J. A.; Rodríguez-López, M. I.; Gomez-Lopez, V. M.; Delicado, E.; Gabaldón, J. A. Egg by-Products as a Tool to Remove Direct Blue 78 Dye from Wastewater: Kinetic, Equilibrium Modeling, Thermodynamics and Desorption Properties. Materials 2020, 13, 1262. DOI: 10.3390/ma13061262.
  • Gautam, R. K.; Mudhoo, A.; Lofrano, G.; Chattopadhyaya, M. C. Biomass-Derived Biosorbents for Metal Ions Sequestration: Adsorbent Modification and Activation Methods and Adsorbent Regeneration. J. Environ. Chem. Eng. 2014, 2, 239–259. DOI: 10.1016/j.jece.2013.12.019.
  • Ribeiro, A.; Belisário, M.; Galazzi, R. M.; Balthazar, D. C.; Pereira, M. G.; Ribeiro, J. N. Evaluation of Two Bioadsorbents for Removing Paracetamol from Aqueous Media. Electron. J. Biotechnol. 2011, 14, 1–10.
  • Mondal, S.; Aikat, K.; Halder, G. Biosorptive Uptake of Ibuprofen by Chemically Modified Parthenium Hysterophorus Derived Biochar: Equilibrium, Kinetics, Thermodynamics and Modeling. Ecol. Eng. 2016, 92, 158–172. DOI: 10.1016/j.ecoleng.2016.03.022.
  • Onal, Y.; Akmil-Başar, C.; Sarici-Ozdemir, C. Elucidation of the Naproxen Sodium Adsorption onto Activated Carbon Prepared from Waste Apricot: Kinetic, Equilibrium and Thermodynamic Characterization. J. Hazard. Mater. 2007, 148, 727–734. DOI: 10.1016/j.jhazmat.2007.03.037.
  • Baccar, R.; Sarrà, M.; Bouzid, J.; Feki, M.; Blánquez, P. Removal of Pharmaceutical Compounds by Activated Carbon Prepared from Agricultural by-Product. Chem. Eng. J. 2012, 211–212, 310–317.
  • Essandoh, M.; Kunwar, B.; Pittman, C. U.; Mohan, D.; Mlsna, T. Sorptive Removal of Salicylic Acid and Ibuprofen from Aqueous Solutions Using Pine Wood Fast Pyrolysis Biochar. Chem. Eng. J. 2015, 265, 219–227. DOI: 10.1016/j.cej.2014.12.006.
  • Liu, H.; Feng, S.; Zhang, S.; Xuan, H.; Jia, C.; Wang, Q. Analysis of the Pore Structure of Longkou Oil Shale Semicoke during Fluidized Bed Combustion. Est. Acad. Publ. 2020, 37, 89–103.
  • Ali, I.; Asim, M.; Khan, T. A. Low Cost Adsorbents for the Removal of Organic Pollutants from Wastewater. J. Environ. Manag. 2012, 113, 170–183. DOI: 10.1016/j.jenvman.2012.08.028.
  • Oyekanmi, A. A.; Latiff, A.; Daud, Z.; Mohamed, R.; Ismail, N.; Aziz, A.; Rafatullah, M.; Hossain, K.; Ahmad, A.; Abiodun, A. K. Adsorption of Cadmium and Lead from Palm Oil Mill Effluent Using Bone-Composite: optimisation and Isotherm Studies. Int. J. Environ. Anal. Chem. 2019, 99, 707–725. DOI: 10.1080/03067319.2019.1607318.
  • Xue, Y.; Wu, S. M.; Zhou, M. Adsorption Characterization of Cu(II) from Aqueous Solution onto Basic Oxygen Furnace Slag. Chem. Eng. J. 2013, 231, 355–364. DOI: 10.1016/j.cej.2013.07.045.
  • Tony, M. A. Central Composite Design Optimization of Bismarck Dye Oxidation from Textile Effluent with Fenton’s Reagent. Appl. water Sci. 2020, 10, 108.
  • De Gisi, S.; Lofrano, G.; Grassi, M.; Notarnicola, M. Characteristics and Adsorption Capacities of Low-Cost Sorbents for Wastewater Treatment: A Review. Sus. Mater. Technol. 2016, 9, 10–40.
  • Mohan, S.; Gandhimathi, R. Removal of Heavy Metal Ions from Municipal Solid Waste Leachate Using Coal Fly Ash as an Adsorbent. J. Hazard. Mater. 2009, 169, 351–359. DOI: 10.1016/j.jhazmat.2009.03.104.
  • Hegazi, H. A. Removal of Heavy Metals from Wastewater Using Agricultural and Industrial Wastes as Adsorbents. Hbrc J 2013, 9, 276–282. DOI: 10.1016/j.hbrcj.2013.08.004.
  • Bibi, S.; Farooqi, A.; Hussain, K.; Haider, N. Evaluation of Industrial Based Adsorbents for Simultaneous Removal of Arsenic and Fluoride from Drinking Water. J. Clean. Prod. 2015, 87, 882–896. DOI: 10.1016/j.jclepro.2014.09.030.
  • López, E.; Soto, B.; Arias, M.; Ez, A. N.; Rubinos, D.; Barral, M. T. Adsorbent Properties of Red Mud and Its Use for Wastewater Treatment. Water Res 1998, 32, 1314–1322. DOI: 10.1016/S0043-1354(97)00326-6.
  • Wang, J. L.; Chen, C. Biosorption of Heavy Metals by Saccharomyces cerevisiae: a review. Biotechnol. Adv. 2006, 24, 427–451. DOI: 10.1016/j.biotechadv.2006.03.001.
  • Nair, V.; Panigrahy, A.; Vinu, R. Development of Novel Chitosan–Lignin Composites for Adsorption of Dyes and Metal Ions from Wastewater. Chem. Eng. J. 2014, 254, 491–502. DOI: 10.1016/j.cej.2014.05.045.
  • Ho, Y.; McKay, G. Removal of Perchlorate from Aqueous Solution by Cross-Linked Fe(III)-Chitosan Complex. Proc. Biochem 2003, 38, 1047–1061. DOI: 10.1016/S0032-9592(02)00239-X.
  • Mousavi, S. M.; Hashemi, S. A.; Babapoor, A.; Savardashtaki, A.; Esmaeili, H.; Rahnema, Y.; Mojoudi, F. S.; Bahrani, S.; Jahandideh, S.; Asadi, M. Separation of Ni (II) from Industrial Wastewater by Kombucha Scoby as a Colony Consisted from Bacteria and Yeast: Kinetic and Equilibrium Studies. Acta Chim. Slov. 2019, 66, 1.
  • Malik, P. K. Use of Activated Carbons Prepared from Sawdust and Rice-Husk for Adsorption of Acid Dyes: A Case Study of Acid Yellow 36. Dyes Pig. 2003, 56, 239–249. [Database] DOI: 10.1016/S0143-7208(02)00159-6.
  • Kumar, P. S.; Ramalingam, S.; Kirupha, S. D.; Murugesan, A.; Vidhyadevi, T.; Sivanesan, S. Overall Adsorption Rate of Metronidazole, Dimetridazole and Diatrizoate on Activated Carbons Prepared from Coffee Residues and Almond Shells. Chem. Eng. J. 2011, 167, 122–131. DOI: 10.1016/j.cej.2010.12.010.
  • Flores-Cano, J. V.; Sanchez-Polo, M.; Messoud, J.; Velo-Gala, I.; Ocampo-Perez, R.; Rivera- Utrilla, J. Overall Adsorption Rate of Metronidazole, Dimetridazole and Diatrizoate on Activated Carbons Prepared from Coffee Residues and Almond Shells. J. Environ. Manag. 2016, 169, 116–125. DOI: 10.1016/j.jenvman.2015.12.001.
  • Velazquez-Jimenez, L. H.; Pavlick, A.; Rangel-Mendez, J. R. Chemical Characterization of Raw and Treated Agave Bagasse and Its Potential as Adsorbent of Metal Cations from Water. Ind. Crop. Prod. 2013, 43, 200–206. [Database] DOI: 10.1016/j.indcrop.2012.06.049.
  • Juang, R. S.; Wu, F. C.; Tseng, R. L. Characterization and Use of Activated Carbons Prepared from Bagasses for Liquid-Phase Adsorption. Coll. Surf. A 2002, 201, 191–199. DOI: 10.1016/S0927-7757(01)01004-4.
  • Ratnakumari, A.; Sobha, K. Utilization of Emu (Dromaius Novaehollandiae) Feathers for the Adsorption of Lead from Aqueous Solution: Kinetic, Isotherm and Thermodynamic. Int. J. Res. Pharm. Biomed. Sci. 2012, 3, 664.
  • Foroutan, R.; Oujifard, A.; Papari, F.; Esmaeili, H. Calcined Umbonium Vestiarium Snail Shell as an Efficient Adsorbent For Treatment of Wastewater Containing Co (II). 3 Biotech 2019, 9, 78 DOI: 10.1007/s13205-019-1575-1.
  • Lee, M. Y.; Hong, K. J.; Kajiuchi, T.; Yang, J. W. Determination of the Efficiency and Removal Mechanism of Cobalt by Crab Shell Particles. J. Chem. Technol. Biotechnol. 2004, 79, 1388–1394. DOI: 10.1002/jctb.1139.
  • Ribeiro, C.; Scheufele, F. B.; Espinoza-Quiñones, F. R.; Módenes, A. N.; da Silva, M. G. C.; Vieira, M. G. A.; Borba, C. E. Characterization of Oreochromis Niloticus fish Scales and Assessment of Their Potential on the Adsorption of Reactive Blue 5G Dye. Coll. Surf. A 2015, 482, 693–701. DOI: 10.1016/j.colsurfa.2015.05.057.
  • Kizilkaya, B.; Tekinay, A.; Dilgin, Y. Adsorption and Removal of Cu (II) Ions from Aqueous Solution Using Pretreated Fish Bones. Desalination 2010, 264, 37–47. DOI: 10.1016/j.desal.2010.06.076.
  • Zhao, Y. Q.; Keogh, C.; Tony, M. A. On the Necessity of Sludge Conditioning with Non-Organic Polymer: AOP Approach. Res. Sci. Technol. 2009, 6, 151–155.
  • Tony, M. A.; Tayeb, A, Faculty of Engineering, Minofya University Response Surface Regression Model in Optimization of Alum Sludge Drying Facility: solar-Fenton’s Reagent Dewatering. IJCEA 2016, 7, 331–335. DOI: 10.18178/ijcea.2016.7.5.600.
  • Matheri, A.; Eloko, N.; Ntuli, F.; Ngila, J. Influence of Pyrolyzed Sludge Use as an Adsorbent in Removal of Selected Trace Metals from Wastewater Treatment. Case Stud. Chem. Environ. Eng. 2020, 2, 100018. DOI: 10.1016/j.cscee.2020.100018.
  • Chen, T.; Zhang, Y.; Wang, H.; Lu, W.; Zhou, Z.; Zhang, Y.; Ren, L. Influence of Pyrolysis Temperature on Characteristics and Heavy Metal Adsorptive Performance of Biochar Derived from Municipal Sewage Sludge. Bioresour. Technol. 2014, 164, 47–54.
  • Leng, L.; Yuan, X.; Huang, H.; Shao, J.; Wang, H.; Chen, X.; Zeng, G. Bio-Char Derived from Sewage Sludge by Liquefaction: characterization and Application for Dye Adsorption. Appl. Surf. Sci. 2015, 346, 223–231. DOI: 10.1016/j.apsusc.2015.04.014.
  • Pardo, L.; Domínguez-Maqueda, M.; Cecilia, J.; Rodríguez, M.; Osajima, J.; Moriñigo, M.; Franco, F. Adsorption of Salmonella in Clay Minerals and Clay-Based Materials. Minerals 2020, 10, 130. DOI: 10.3390/min10020130.
  • Cecilia, J.; Arango-Díaz, A.; Franco, F.; Jiménez-Jiménez, J.; Storaro, L.; Moretti, E.; Rodríguez-Castellón, E. CuO-CeO2 Supported on Montmorillonite-Derived Porous Clay Heterostructures (PCH) for Preferential CO Oxidation in H2 -Rich Stream. Cata. Today 2015, 253, 126–136. DOI: 10.1016/j.cattod.2015.01.040.
  • Sanchís, R.; Cecilia, J.; Soriano, M.; Vázquez, M.; Dejoz, A.; López Nieto, J.; Rodríguez Castellón, E.; Solsona, B. Porous Clays Heterostructures as Supports of Iron Oxide for Environmental Catalysis. Chem. Eng. J. 2018, 334, 1159–1168.
  • Wang, X.; Liu, X.; Wen, L.; Zhou, Y.; Jiang, Y.; Zhizhong, L. Comparison of Basic Dye Crystal Violet Removal from Aqueous Solution by Low-Cost Biosorbents. Sep Sci. Technol. 2008, 43, 3712–3731. DOI: 10.1080/01496390802222640.
  • Sadegh, H.; Gomaa, A.; Ali, M.; Gupta, V. K.; Makhlouf, A.; Shahryari-Ghoshekandi, R.; Nadagouda, M. N.; Sillanpa, M.; Megie, E. Removal of Ammonium Ions from Wastewater a Short Review in Development of Efficient Methods. J. Nanostruct. Chem. 2017, 7, 1–14. DOI: 10.1007/s40097-017-0219-4.
  • Shah, M.; Fawcett, D.; Sharma, S.; Tripathy, S.; Poinern, G. Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials (Basel) 2015, 8, 7278–7308. DOI: 10.3390/ma8115377.
  • Salvadori, M. R.; Ando, R. A.; Oller do Nascimento, C. A.; Corrêa, B. Intracellular Biosynthesis and Removal of Copper Nanoparticles by Dead Biomass of Yeast Isolated from the Wastewater of a Mine in the Brazilian Amazonia. PLoS One. 2014, 9, e87968 DOI: 10.1371/journal.pone.0087968.
  • Das, S.; Chakraborty, J.; Chatterjee, S.; Kumar, H. Prospects of Biosynthesized Nanomaterials for the Remediation of Organic and Inorganic Environmental Contaminants. Environ. Sci: Nano 2018, 5, 2784– 2808. DOI: 10.1039/C8EN00799C.
  • Johnson, A.; Merilis, G.; Hastings, J.; Palmer, M. E.; Fitts, J. P.; Chidambaram, D. Reductive Degradation of Organic Compounds Using Microbial Nanotechnology. J. Electrochem. Soc. 2013, 160, 4613–4651.
  • Sebeia, N.; Jabli, M.; Ghith, A.; Saleh, A. Eco-Friendly Synthesis ofCynomorium Coccineum Extract for Controlled Production of Copper Nanoparticles for Sorption of Methylene Blue Dye. Arab. J. Chem. 2020, 13, 4263–4274. DOI: 10.1016/j.arabjc.2019.07.007.
  • Ali, D.; Thajuddin, N.; Jeganathan, K.; Gunasekaran, M. Plant Extract Mediated Synthesis of Silver and Gold Nanoparticles and Its Antibacterial Activity against Clinically Isolated Pathogens. Coll. Surf. B 2011, 85360–85365.
  • Kathiraven, T.; Sundaramanickam, A.; Shanmugam, N.; Balasubramanian, T. Green Synthesis of Silver Nanoparticles Using Marine Algae Caulerpa Racemosa and Their Antibacterial Activity against Some Human Pathogens. Appl. Nanosci. 2015, 5, 499–504. DOI: 10.1007/s13204-014-0341-2.
  • Chandran, S. P.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M. Synthesis of Gold Nanotriangles and Silver Nanoparticles Using Aloe Vera Plant extract. Biotechnol. Prog. 2006, 22, 577–583. DOI: 10.1021/bp0501423.
  • Tony, M. A.; Mansour, S. Solar photo-Fenton Reagent with Nanostructured Iron Oxide for Bismarck Dye Oxidation: An Egyptian Apparel Case Study. Int. J. Environ. Sci. Technol. 2020, 17, 1337–1350. DOI: 10.1007/s13762-019-02533-x.
  • Namasivayam, C.; Radhika, R.; Suba, S. Uptake of Dyes by a Promising Locally Available Agricultural Solid Waste: coir Pith. Waste Manag. 2011, 2, 381–387.
  • Annadurai, G.; Juang, R.-S.; Lee, D.-J. Use of Cellulose-Based Wastes for Adsorption of Dyes from Aqueous Solutions. J. Hazard. Mater. 2002, 92, 263–274.
  • Sulyman, M.; Gierak, A. Green Environmental Approach for Adsorption of Hazardous Dye from Water Using Tree and Sea Plant Leaves (Dead L.). Acta Sci. Agri. 2020, 4, 1–10.
  • Khattri, S.; Singh, M. Colour Removal from Synthetic Dye Wastewater Using a Bioadsorbent. Water Air Soil Poll. 2000, 120, 283–292. DOI: 10.1023/A:1005207803041.
  • Tavlieva, M.; Genieva, S.; Georgieva, V.; Vlaev, L. T. Kinetic Study of Brilliant Green Adsorption from Aqueous Solution onto White Rice Husk Ash. J. Coll. Inter. Sci. 2013, 409, 112–122. DOI: 10.1016/j.jcis.2013.07.052.
  • Uddin, M.; Nasar, A. Walnut Shell Powder as a low-Cost Adsorbent for Methylene Blue Dye: Isotherm, Kinetics, Thermodynamic, Desorption and Response Surface Methodology Examinations. Sci. Rep. 2020, 10, 7983 DOI: 10.1038/s41598-020-64745-3.
  • Jawad, A. H.; Abdulhameed, A. S.; Mastuli, M. S. Acid-Factionalized Biomass Material for Methylene Blue Dye Removal: A Comprehensive Adsorption and Mechanism Study. J. Taibah Uni. Sci. 2020, 14, 305–313. DOI: 10.1080/16583655.2020.1736767.
  • Jawad, A.; Mallah, S.; Mastuli, M. Adsorption Behavior of Methylene Blue on Acid-Treated Rubber (Hevea Brasiliensis) Leaf. Dwt. 2018, 124, 297–307. DOI: 10.5004/dwt.2018.22915.
  • Jawad, A. H.; Mohammed, S. A.; Mastuli, M. S.; Abdullah, M. F, 118(2018)342-351 DOI: Carbonization of Corn (Zea Mays) Cob Agricultural Residue by Onestep Activation with Sulfuric Acid for Methylene Blue Adsorption. Dwt. 2018, 118, 342–351. DOI: 10.5004/dwt.2018.22680.
  • Swamy, M. M.; Nagabhushana, B. M.; Hari Krishna, R.; Kottam, N.; Raveendra, R. S.; Prashanth, P. A. Fast Adsorptive Removal of Methylene Blue Dye from Aqueous Solution onto a Wild Carrot Flower Activated Carbon: isotherms and Kinetics Studies. Dwt. 2017, 71, 399–405. DOI: 10.5004/dwt.2017.20520.
  • Uddin, T.; Rahman, A.; Islam, A. A Potential Low Cost Adsorbent for the Removal of Cationic Dyes from Aqueous Solutions. Appl. Water Sci. 2017, DOI DOI: 10.1007/s13201-017-0542-4.
  • Jawad, A.; Mamat, N.; Abdullah, M.; Ismail, K. Adsorption of Methylene Blue onto Acid-Treated Mango Peels: kinetic, Equilibrium and Thermodynamic. Dwt. 2017, 59, 210–219. DOI: 10.5004/dwt.2017.0097.
  • Uddin, M.; Rukanuzzaman, M.; Khan, M.; Islam, M. Adsorption of Methylene Blue from Aqueous Solution by Jackfruit (Artocarpus Heteropyllus) Leaf Powder: A fixed-bed column study. J. Environ. Manage. 2009, 90, 3443–3450.
  • Aygün, A.; Yenisoy-Karakaş, S.; Duman, I. Production of Granular Activated Carbon from Fruit Stones and Nutshells and Evaluation of Their Physical, Chemical and Adsorption Properties. Microporous Mesoporous Mater. 2003, 66, 189–195. DOI: 10.1016/j.micromeso.2003.08.028.
  • Kyzas, G. Z.; Lazaridis, N. K.; Mitropoulos, A. C. Investigation of Synergistic Adsorption between Methyl Orange and Cd(II) from Binary Mixtures on Magnesium Hydroxide Modified Clinoptilolite. Chem. Eng. J. 2012, 189-190, 148–159. DOI: 10.1016/j.cej.2012.02.045.
  • Lakshmi, U. R.; Srivastava, V. C.; Mall, I. D.; Lataye, D. H. Rice Husk Ash as an Effective Adsorbent: evaluation of Adsorptive Characteristics for Indigo Carmine Dye. J. Environ. Manage. 2009, 90, 710–720. [18289771]
  • Mittal, A.; Malviya, A.; Kaur, D.; Mittal, J.; Kurup, L. Studies on the Adsorption Kinetics and Isotherms for the Removal and Recovery of Methyl Orange from Wastewaters Using Waste Materials. J. Hazard. Mater. 2007, 148, 229–240. DOI: 10.1016/j.jhazmat.2007.02.028.
  • Ferrero, F. Dye Removal by Low Cost Adsorbents: hazelnut Shells in Comparison with Wood Sawdust. J. Hazard. Mater. 2007, 142, 144–152.
  • Sun, G.; Xu, X. Sunflower Stalks as Adsorbents for Color Removal from Textile Wastewater. Ind. Eng. Chem. Res. 1997, 36, 808–812. DOI: 10.1021/ie9603833.
  • Tony, M. A. An Industrial Ecology Approach: green Cellulose-Based Bio-Adsorbent from Sugar Industry Residue for Treating Textile Industry Wastewater Effluent. Int. J. Environ. Anal. Chem. 2019, DOI: 10.1080/03067319.2019.1661397.
  • Chen, J. P.; Yang, L. Chemical Modification of Sargassum sp. for Prevention of Organic Leaching and Enhancement of Uptake during Metal Biosorption. Ind. Eng. Chem. Res. 2005, 44, 9931–9942. DOI: 10.1021/ie050678t.
  • Ashour, A.; Tony, M. A. Equilibrium and Kinetic Studies on Biosorption of Iron (II) and Iron (III) Ions onto Eggshell Powder from Aqueous Solution. Appl. Eng. 2017, 1, 65–73.
  • Zhang, C.-Z.; Yuan, Y.; Li, T. Advances in Fe(III) Bioreduction and Its Application Prospect for Groundwater Remediation: A Review. Environ. Eng. Sci. 2018, 35, 1–10.
  • Suzuki, Y.; Kametani, T.; Maruyama, T. Removal of Heavy Metals from Aqueous Solution by Nonliving Ulva Seaweed as Biosorbent. Water Res. 2005, 39, 1803–1808.
  • Sepehr, M. N.; Amrane, A.; Karimaian, K. A.; Zarrabi, M.; Ghaffari, H. R. Potential of Waste Pumice and Surface Modified Pumice for Hexavalent Chromium Removal: Characterization, Equilibrium, Thermodynamic and Kinetic Study. J. Taiwan Inst. Chem. Eng. 2014, 45, 635–647. DOI: 10.1016/j.jtice.2013.07.005.
  • Aydin, Y. A.; Aksoy, N. D. Adsorption of Chromium on Chitosan: optimization, Kinetics and Thermodynamics. Chem. Eng. J. 2009, 151, 188–194. DOI: 10.1016/j.cej.2009.02.010.
  • Husein, Z. Desalin. Adsorption and Removal of Mercury Ions from Aqueous Solution Using Raw and Chemically Modified Egyptian Mandarin Peel. ‏. Water Treat. 2013, 51, 6761–6769. DOI: 10.1080/19443994.2013.801793.
  • Tejada-Tovar, C.; Gonzalez-Delgado, A. D.; Villabona-Ortiz, A. Characterization of Residual Biomasses and Its Application for the Removal of Lead Ions from Aqueous Solution. Appl. Sci. 2019, 9, 4486. DOI: 10.3390/app9214486.
  • Owamah, H. I. Biosorptive Removal of Pb(II) and Cu(II) from Wastewater Using Activated Carbon from Cassava Peels. J. Mater. Cycles Waste Manag. 2014, 16, 347–358. DOI: 10.1007/s10163-013-0192-z.
  • López-Delgado, A.; Pérez, C.; López, F. A. Sorption of Heavy Metals on Blast Furnace Sludge. Water Res. 1998, 32, 989–996. DOI: 10.1016/S0043-1354(97)00304-7.
  • Feng, N.; Guo, X.; Liang, S. Adsorption Study of Copper(II) by Chemicallymodified Orange Peel. J. Hazard. Mater. 2009, 164, 1286–1292. DOI: 10.1016/j.jhazmat.2008.09.096.
  • Anwar, J.; Shafique, U.; Zaman, W.; Salman, M.; Dar, A.; Anwar, S. Removal of Pb(II) and Cd(II) from Water by Adsorption on Peels of Banana. Bioresour. Technol. 2010, 101, 1752–1755.[19906528]
  • Xi, J. H.; He, M. C.; Lin, C. Y. Adsorption of Antimony(III) and Antimony(V) on Bentonite: kinetics, Thermodynamics and Anion Competition. Microchem. J. 2011, 97, 85–91. DOI: 10.1016/j.microc.2010.05.017.
  • Sari, A.; Citak, D.; Tuzen, M. Equilibrium, Thermodynamic and Kinetic Studies on Adsorption of Sb(III) from Aqueous Solution Using Low-Cost Natural Diatomite. Chem. Eng. J. 2010, 162, 521–527.
  • Xi, J. H.; He, M. C.; Wang, K. P.; Zhang, G. Z. Adsorption of Antimony(III) on Goethite in the Presence of Competitive Anions. J. Geochem. Explor. 2013, 132, 201–208. DOI: 10.1016/j.gexplo.2013.07.004.
  • Chutia, P.; Kato, S.; Kojima, T.; Satokawa, S. Adsorption of as(V) on surfactant-modified natural zeolites. J. Hazard. Mater. 2009, 162, 204–211. DOI: 10.1016/j.jhazmat.2008.05.024.
  • Oliveira, D.; Gonçalves, M.; Oliveira, L.; Guilherme, L. Evaluation of Untreated Coffee Husks as Potential Biosorbents for Treatment of Dye Contaminated Waters. J. Hazard. Mater. 2008, 151, 280–284. DOI: 10.1016/j.jhazmat.2007.11.001.
  • Montes-Grajales, D.; Fennix-Agudelo, M.; Miranda-Castro, W. Sorption of Heavy Metals on Blast Furnace Sludge. Sci. Total Environ. 2017, 595, 601–614. DOI: 10.1016/j.scitotenv.2017.03.286.
  • Mohapatra, D. P.; Kirpalani, D. M. Advancement in Treatment of Wastewater: Fate of Emerging Contaminants, the Canadian. Can. J. Chem. Eng. 2019, 97, 2621–2631. DOI: 10.1002/cjce.23533.
  • Sophia, A. C.; Lima, E. Ecotoxicol, Removal of Emerging Contaminants from the Environment by Adsorption. Environ. Saf 2018, 150, 1–17.
  • Tony, M. A. 2019 Win-Win Wastewater Treatment to Sustain World: Porous Adsorbents from Waste Waterworks Sludge for Phenol Remediation. 16th IWA Conference on Anaerobic Digestion 23-27 June 2019, Delft, The Netherlands.
  • Tony, M. A.; Purcell, P. J.; Mansour, S. Efcient Adsorption of Pharmaceutical Drugs from Aqueous Solution Using a Mesoporous Activated Carbon. Chem. Eng. Commun. 2020, DOI: 10.1080/00986445.2020.1719079.
  • Hubetska, T.; Kobylinska, N.; García, J. Efficient Adsorption of Pharmaceutical Drugs from Aqueous Solution Using a Mesoporous Activated Carbon. Adsorption 2020, 26, 251–266. DOI: 10.1007/s10450-019-00143-0.
  • Liao, P.; Zhan, Z.; Dai, J.; Wu, X.; Zhang, W.; Wang, K.; Yuan, S. Adsorption of Tetracycline and Chloramphenicol in Aqueous Solutions by Bamboo Charcoal: A Batch and Fixed-Bed Column Study. Chem. Eng. J. 2013, 228, 496–505. DOI: 10.1016/j.cej.2013.04.118.
  • Marques, C.; Marcuzzo, J.; Baldan, M.; Mestre, A.; Carvalho, A. Pharmaceuticals Removal by Activated Carbons: role of Morphology on Cyclic Thermal Regeneration. Chem. Eng. J. 2017, 321, 233–244. DOI: 10.1016/j.cej.2017.03.101.
  • Tsai, Y.; Chang, P.; Gao, Z.; Xu, X.; Chen, Y.; Wang, Z.; Chen, X.; Yang, Y.; Wang, T.; Jean, J. S.; et al. Amitriptyline Removal Using Palygorskite Clay. Chemosphere 2016, 155, 292–299. DOI: 10.1016/j.chemosphere.2016.04.062.
  • García-Mateos, F.; Ruiz-Rosas, R.; Marqués, M.; Cotoruelo, L.; Rodríguez-Miraso, J.; Cordero, T. Removal of Paracetamol on Biomass-Derived Activated Carbon: modeling the Fixed Bed Breakthrough Curves Using Batch Adsorption Experiments. Chem. Eng. J. 2015, 279, 18–30. DOI: 10.1016/j.cej.2015.04.144.
  • Rajapaksha, A.; Vithanage, M.; Zhang, M.; Ahmad, M.; Mohan, D.; Chang, S.; Ok, Y. Pyrolysis Condition Affected Sulfamethazine Sorption by Tea Waste Biochars. Bioresour. Technol. 2014, 166, 303–308. DOI: 10.1016/j.biortech.2014.05.029.
  • Mestre, A.; Pires, R.; Aroso, I.; Fernandes, E.; Pinto, M.; Reis, R.; Andrade, M.; Pires, J.; Silva, S.; Carvalho, A. Activated Carbons Prepared from Industrial Pre-Treated Cork: sustainable Adsorbents for Pharmaceutical Compounds Removal. Chem. Eng. J. 2014, 253, 408–417. DOI: 10.1016/j.cej.2014.05.051.
  • Mandal, A.; Singh, N.; Purakayastha, T. J. Purakayastha, T, Characterization of Pesticide Sorption Behaviour of Slow Pyrolysis Biochars as Low Cost Adsorbent for Atrazine and Imidacloprid Removal. Sci. Total Environ. 2017, 577, 376–385. DOI: 10.1016/j.scitotenv.2016.10.204.
  • Rodríguez-Liébana, J.; López-Galindo, A.; de Cisneros, C.; Gálvez, A.; Rozalén, M.; Sánchez-Espejo, R.; Caballero, E.; Peña, A. Adsorption/Desorption of Fungicides in Natural Clays from Southeastern Spain. Appl. Clay Sci. 2016, 132–133, 402–411.
  • Azarkan, S.; Peña, A.; Draoui, K.; Sainz-Díaz, C. Adsorption of Two Fungicides on Natural Clays of Morocco. Appl. Clay Sci. 2016, 123, 37–46. DOI: 10.1016/j.clay.2015.12.036.
  • Liu, N.; Charrua, A.; Weng, C.; Yuan, X.; Ding, F. Characterization of Biochars Derived from Agriculture Wastes and Their Adsorptive Removal of Atrazine from Aqueous Solution: A Comparative Study. Bioresour. Technol. 2015, 198, 55–62. DOI: 10.1016/j.biortech.2015.08.129.
  • Han, W.; Luo, L.; Zhang, S. Adsorption of Bisphenol a on Lignin: effects of Solution Chemistry. Int. J. Environ. Sci. Technol. 2012, 9, 543–548. DOI: 10.1007/s13762-012-0067-1.
  • Yu, Q. S.; Deng, S.; Yu, G. Selective Removal of Perfluorooctane Sulfonate from Aqueous Solution Using Chitosan-Based Molecularly Imprinted Polymer Adsorbents. Water Res. 2008, 42, 3089–3097. DOI: 10.1016/j.watres.2008.02.024.
  • Andrade, J.; Oliveira, M.; Meuris, S.; Melissa, G. Adsorption of Pharmaceuticals from Water and Wastewater Using Nonconventional Low-Cost Materials: A Review. Ind. Eng. Chem. Res. 2018, 57, 3103–3127.
  • Tony, M. A. 2019 Sun in a Box” Day-to-Night Solar Energy Storage for Heating and Cooling Applications Utilizing Zeolite Synthesized from Waste Residues towards Energy Density Enhancement. 5th International Conference on Energy Engineering (ICEE-5) Aswan, Egypt, 24-26 December.
  • Tony, M. A. From Biomass Residue to Solar-Thermal Energy: The Potential of Bagasse as a Heat Storage Material. Euro-Medit. J. Environ. Integ. 2020, DOI: 10.1007/s41207-020-00158-y.
  • Mico, M.; Chourdaki, S.; Bacardit, J.; Sans, C. Comparison between Ozonation and Photo-Fenton Processes for Pesticide Methomyl Removal in Advanced Greenhouses. Ozone: Sci. Eng. 2010, 32, 259–264.
  • Raut-Jadhav, S.; Pinjari, D.; Saini, D.; Sonawane, S.; Pandit, A. Intensification of Degradation of Methomyl (Carbamate Group Pesticide) by Using the Combination of Ultrasonic Cavitation and Process Intensifying Additives. Ultrason. Sonochem. 2016, 31, 135–142.
  • Mitchell, S. M.; Ahmad, M.; Teel, A.; Watts, R. Degradation of Perfluorooctanoic Acid by Reactive Species Generated through Catalyzed H2O2 Propagation Reactions. Environ. Sci. Technol. Lett. 2014, 1, 117–121. DOI: 10.1021/ez4000862.
  • Gupta, V. K.; Nayak, A. Cadmium Removal and Recovery from Aqueous Solutions by Novel Adsorbents Prepared from Orange Peel and Fe2O3 Nanoparticles. Chem. Eng. 2012, 180, 81–90. DOI: 10.1016/j.cej.2011.11.006.
  • Srivastava, S.; Goyal, P. Environ. Sci. Eng., Reusability of Biomaterial: A Cost Effective Approach. Novel Biomaterials 2010, 93–96. DOI: 10.1007/978-3-642-11329-1.
  • Thirunavukkarasu, O. S.; Viraraghavan, T.; Subramanian, K. S. Arsenic Removal from Drinking Water Using Iron Oxide Coated Sand. Water Air Soil Poll 2003, 142, 95–111. DOI: 10.1023/A:1022073721853.
  • Ferreira, R. M.; Domingues, A.; Takase, I.; Stapelfeldt, D. Studies of Selective Adsorption, Desorption and Reuse of Chemically Altered Biomass Produced from Aquatic Macrophytes for Treatment of Metal-Containing Wastewater. Water Sci. Technol. 2017, 75, 2083–2093. DOI: 10.2166/wst.2017.090.
  • Momina, M.; Rafatullah, S.; Ismai, A.; Ahmad, A. Optimization Study for the Desorption of Methylene Blue Dye from Clay Based Adsorbent Coating. Water 2019, 11, 1304. DOI: 10.3390/w11061304.
  • Pietrelli, L.; Francolini, I.; Piozzi, A.; Sighicelli, M.; Silvestro, I.; Vocciante, M. Chromium(III) Removal from Wastewater by Chitosan Flakes. Appl. Sci. 2020, 10, 1925. DOI: 10.3390/app10061925.
  • Sorengard, M.; Lind, A.; Ahrens, L. Thermal Desorption as a High Removal Remediation Technique for Soils Contaminated with per- and Polyfluoroalkyl Substances (PFASs). PLoS One 2020, 15, e0234476. DOI: 10.1371/journal.pone.0234476.
  • Kumar, P. S.; Korving, L.; Mark, C.; Loosdrecht, V.; Witkamp, G. Adsorption as a Technology to Achieve Ultra-Low Concentrations of Phosphate: Research Gaps and Economic Analysis. Water Res. X 2019, 4, 100029 DOI: 10.1016/j.wroa.2019.100029.
  • Lind, A. An Assessment of Thermal Desorption as a Remediation Technique for per- and Polyfluoroalkyl Substances (PFASs) in Contaminated Soil, Department of Aquatic Sciences and Assessment. Swedish Uni. Agr. Sci. Lennart Hjelms Väg 2018, 9, SE 750–07.
  • Anyika, C.; Asri, M.; Abdul Majid, Z.; Jaafar, J.; Yahya, A. Batch Sorption–Desorption of as(III) from Waste Water by Magnetic Palm Kernel Shell Activated Carbon Using Optimized Box–Behnken Design. Appl. Water Sci. 2017, 7, 4573–4591. DOI: 10.1007/s13201-017-0610-9.
  • Unuabonah, E. I.; Adedapo, A. O.; Nnamdi, C. O.; Adewuyi, A.; Omorogie, M. O.; Adebowale, K. O.; Olu-Owolabi, B. I.; Ofomaja, A. E.; Taubert, A. Desal. Batch Sorption–Desorption of as(III) from Waste Water by Magnetic Palm Kernel Shell Activated Carbon Using Optimized Box–Behnken Design. Water Treat 2015, 56, 536–551. DOI: 10.1080/19443994.2014.944572.
  • Chen, M.; Ding, W.; Wang, J.; Diao, G. Removal of Azo Dyes from Water by Combined Techniques of Adsorption, Desorption, and Electrolysis Based on a Supramolecular Sorbent. Ind. Eng. Chem. Res. 2013, 52, 2403–2411. DOI: 10.1021/ie300916d.
  • Hu, J.; Shipley, H. J. Regeneration of Spent TiO2 Nanoparticles for Pb(II), Cu(II), and Zn(II) Removal. Environ. Sci. Pollut. Res. Int. 2013, 20, 5125–5137. DOI: 10.1007/s11356-013-1502-7.
  • Bouraada, M.; Lafjah, M.; Ouali, M.; Demenorval, L. Basic Dye Removal from Aqueous Solutions by Dodecylsulfate- and Dodecyl Benzene Sulfonate-Intercalated Hydrotalcite. J. Hazard. Mater. 2008, 153, 911–918. DOI: 10.1016/j.jhazmat.2007.09.076.
  • Anirudhan, T.; Unnithan, M. Arsenic(V) removal from aqueous solutions using an anion exchanger derived from coconut coir pith and its recovery. Chemosphere 2007, 66, 60–66.
  • Jeon, C.; Park, K. Adsorption and Desorption Characteristics of Mercury(II) Ions Using Aminated Chitosan Bead. Water Res. 2005, 393, 938–3944.
  • Ajmal, M.; Rao, R.; Anwar, S.; Ahma, J.; Ahmad, R. Adsorption Studies on Rice Husk: removal and Recovery of Cd(II) from Wastewater. Bioresour. Technol. 2003, 86, 147–149.
  • Liu, M.; Deng, Y.; Zhan, H.; Zhang, X. Adsorption and Desorption of Copper(II) from Solutions on New Spherical Cellulose Adsorbent. J. Appl. Polym. Sci. 2002, 84, 478–485. DOI: 10.1002/app.10114.
  • Genz, A.; Kornmüller, A.; Jekel, M. Advanced Phosphorus Removal from Membrane Filtrates by Adsorption on Activated Aluminium Oxide and Granulated Ferric hydroxide. Water Res. 2004, 38, 3523–3530. DOI: 10.1016/j.watres.2004.06.006.
  • Sengupta, S.; Pandit, A. Selective Removal of Phosphorus from Wastewater Combined with Its Recovery as a Solid-Phase Fertilizer. Water Res. 2011, 45, 3318–3330.
  • Drenkova-Tuhtan, A.; Schneider, M.; Franzreb, M.; Meyer, C.; Gellermann, C.; Sextl, G.; Mandel, K.; Steinmetz, H. Pilot-Scale Removal and Recovery of Dissolved Phosphate from Secondary Wastewater Effluents with Reusable ZnFeZr Adsorbent @ Fe3O4/SiO2 Particles with Magnetic Harvesting. Water Res. 2017, 109, 77–87. DOI: 10.1016/j.watres.2016.11.039.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.