460
Views
10
CrossRef citations to date
0
Altmetric
Articles

Nanoemulsion-based patch for the dermal delivery of ascorbic acid

ORCID Icon, ORCID Icon, &
Pages 1801-1811 | Received 23 Sep 2020, Accepted 05 Jan 2021, Published online: 16 Feb 2021

References

  • Shai, A.; Baran, R.; Maibach, H. I. Handbook of Cosmetic Skin Care. Informa Healthcare, 2009.
  • Tobin, D. J. Introduction to Skin Aging. J Tissue Viability. 2017, 26, 37–46. DOI: 10.1016/j.jtv.2016.03.002.
  • Krutmann, J.; Bouloc, A.; Sore, G.; Bernard, B. A.; Passeron, T. The Skin Aging Exposome. J. Dermatol. Sci. 2017, 85, 152–161. DOI: 10.1016/j.jdermsci.2016.09.015.
  • Rhie, G.-e.; Shin, M. H.; Seo, J. Y.; Choi, W. W.; Cho, K. H.; Kim, K. H.; Park, K. C.; Eun, H. C.; Chung, J. H. Aging- and Photoaging-Dependent Changes of Enzymic and Nonenzymic Antioxidants in the Epidermis and Dermis of Human Skin In Vivo. J. Invest. Dermatol. 2001, 117, 1212–1217. DOI: 10.1046/j.0022-202x.2001.01469.x.
  • Kohen, R. S. Antioxidants: Their Role in Aging and in Oxidative Stress—New Approaches for Their Evaluation. Biomed. Pharmacother. 1999, 53, 181–192. DOI: 10.1016/S0753-3322(99)80087-0.
  • Mandl, J.; Szarka, A.; Banhegyi, G. Vitamin C: update on Physiology and Pharmacology. Br. J. Pharmacol. 2009, 157, 1097–1110. DOI: 10.1111/j.1476-5381.2009.00282.x.
  • Cosgrove, M. C.; Franco, O. H.; Granger, S. P.; Murray, P. G.; Mayes, A. E. Dietary Nutrient Intakes and Skin-Aging Appearance among Middle-Aged American Women. Am. J. Clin. Nutr. 2007, 86, 1225–1231. DOI: 10.1093/ajcn/86.4.1225.
  • Jocienė, J.; Vainorė, I. Impact of Vitamin C to Mature Facial Skin. Appl Res Health Soc Sci 2016, 13, 40–53. DOI: 10.1515/arhss-2016-0005.
  • Murray, J. C.; Burch, J. A.; Streilein, R. D.; Iannacchione, M. A.; Hall, R. P.; Pinnell, S. R. A Topical Antioxidant Solution Containing Vitamins C and E Stabilized by Ferulic Acid Provides Protection for Human Skin against Damage Caused by Ultraviolet Irradiation. J. Am. Acad. Dermatol. 2008, 59, 418–425. DOI: 10.1016/j.jaad.2008.05.004.
  • Pullar, J. M.; Carr, A. C.; Vissers, M. The Roles of Vitamin C in Skin Health. Nutrients 2017, 9, 866. DOI: 10.3390/nu9080866.
  • Sauermann, K.; Jaspers, S.; Koop, U.; Wenck, H. Topically Applied Vitamin C Increases the Density of Dermal Papillae in Aged Human Skin. BMC Dermatol. 2004, 4, 13. DOI: 10.1186/1471-5945-4-13.
  • Caritá, A. C.; Fonseca-Santos, B.; Shultz, J. D.; Michniak-Kohn, B.; Chorilli, M.; Leonardi, G. R. Vitamin C: One Compound, Several Uses. Advances for Delivery, Efficiency and stability. Nanomedicine 2020, 24, 102117. DOI: 10.1016/j.nano.2019.102117.
  • Ravetti, S.; Clemente, C.; Brignone, S.; Hergert, L.; Allemandi, D.; Palma, S. Ascorbic Acid in Skin Health. Cosmetics 2019, 6, 58. DOI: 10.3390/cosmetics6040058.
  • Hiatt, A. N.; Ferruzzi, M. G.; Taylor, L. S.; Mauer, L. J. Deliquescence Behavior and Chemical Stability of Vitamin C Forms (Ascorbic Acid, Sodium Ascorbate, and Calcium Ascorbate) and Blends. Int. J. Food Prop 2011, 14, 1330–1348. DOI: 10.1080/10942911003650338.
  • Hamadou, A. H.; Huang, W.-C.; Xue, C.; Mao, X. Formulation of Vitamin C Encapsulation in Marine Phospholipids Nanoliposomes: Characterization and Stability Evaluation during Long Term Storage. LWT 2020, 127, 109439. DOI: 10.1016/j.lwt.2020.109439.
  • Attia, M.; Essa, E. A.; Zaki, R. M.; Elkordy, A. A. An Overview of the Antioxidant Effects of Ascorbic Acid and Alpha Lipoic Acid (in Liposomal Forms) as Adjuvant in Cancer Treatment. Antioxidants 2020, 9, 359. DOI: 10.3390/antiox9050359.
  • Díaz, YdlMZ.; Menghi, K.; Guerrero, M. L.; Nocelli, N.; Fanani, M. L. l-Ascorbic Acid Alkyl Esters Action on Stratum Corneum Model Membranes: An Insight into the Mechanism for Enhanced Skin Permeation. Colloids Surf. B. Biointerfaces 2020, 185, 110621. DOI: 10.1016/j.colsurfb.2019.110621.
  • Liu, X.; Wang, P.; Zou, Y.-X.; Luo, Z.-G.; Tamer, T. M. Co-encapsulation of Vitamin C and β-Carotene in Liposomes: Storage Stability, Antioxidant Activity, and In Vitro Gastrointestinal Digestion. Food Res. Int. 2020, 136, 109587. DOI: 10.1016/j.foodres.2020.109587.
  • Van Tran, V.; Nguyen, T. L.; Moon, J.-Y.; Lee, Y.-C. Core-Shell Materials, Lipid Particles and Nanoemulsions, for Delivery of Active anti-Oxidants in Cosmetics Applications: challenges and Development Strategies. Chem. Eng. J. 2019, 368, 88–114. DOI: 10.1016/j.cej.2019.02.168.
  • Harwansh, R. K.; Deshmukh, R.; Rahman, M. A. Nanoemulsion: Promising Nanocarrier System for Delivery of Herbal Bioactives. J. Drug Deliv. Sci. Tec 2019, 51, 224–233. DOI: 10.1016/j.jddst.2019.03.006.
  • Kaur, R.; Ajitha, M. Formulation of Transdermal Nanoemulsion Gel Drug Delivery System of Lovastatin and Its in Vivo Characterization in Glucocorticoid Induced Osteoporosis Rat Model. J. Drug Deliv. Sci. Tec. 2019, 52, 968–978. DOI: 10.1016/j.jddst.2019.06.008.
  • Singh, Y.; Meher, J. G.; Raval, K.; Khan, F. A.; Chaurasia, M.; Jain, N. K.; Chourasia, M. K. Nanoemulsion: Concepts, Development and Applications in Drug Delivery. J. Control. Release 2017, 252, 28–49. DOI: 10.1016/j.jconrel.2017.03.008.
  • Kim, T.-I.; Kim, T.-G.; Lim, D.-H.; Kim, S.-B.; Park, S.-M.; Hur, T.-Y.; Ki, K.-S.; Kwon, E.-G.; Vijayakumar, M.; Kim, Y.-J.; et al. Preparation of Nanoemulsions of Vitamin A and C by Microfluidization: Efficacy on the Expression Pattern of Milk-Specific Proteins in MAC-T Cells. Molecules 2019, 24, 2566. DOI: 10.3390/molecules24142566.
  • Uner, M.; Wissing, S. A.; Yener, G.; Muller, R. H. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for Application of Ascorbyl Palmitate. Pharmazie 2005, 60, 577–582.
  • Rozman, B.; Gašperlin, M. Stability of Vitamins C and E in Topical Microemulsions for Combined Antioxidant Therapy. Drug Deliv. 2007, 14, 235–245. DOI: 10.1080/10717540601067786.
  • Quan, D.; Venkateshwaran, S.; Ebert, C. D. Antioxidant Composition for Topical/Transdermal Prevention and Treatment of Wrinkles. 2001, Google Patents.
  • Khalid, N.; Kobayashi, I.; Neves, M. A.; Uemura, K.; Nakajima, M. Preparation and Characterization of Water-in-Oil Emulsions Loaded with High Concentration of l-Ascorbic Acid. LWT-Food Sci. Technol. 2013, 51, 448–454. DOI: 10.1016/j.lwt.2012.11.020.
  • Che Marzuki, N.H.; Wahab, R.A.; Abdul Hamid, M. An Overview of Nanoemulsion: Concepts of Development and Cosmeceutical Applications. Biotechnol. Biotechnol. Equip. 2019, 33, 779–797. DOI: 10.1080/13102818.2019.1620124.
  • Zaid Alkilani, A.; Hamed, R.; Al-Marabeh, S.; Kamal, A.; Abu-Huwaij, R.; Hamad, I. Nanoemulsion-Based Film Formulation for Transdermal Delivery of Carvedilol. J. Drug Deliv. Sci. Tec. 2018, 46, 122–128. DOI: 10.1016/j.jddst.2018.05.015.
  • Abu-Huwaij, R.; Hamed, R.; Daoud, E.; Alkilani, A. Z. Development and in Vitro Characterization of Nanoemulsion-Based Buccal Patches of Valsartan. Acta Pol. Pharm. 2019, 76, 313–321. DOI: 10.32383/appdr/99526.
  • Hamed, R.; Farhan, A.; Abu-Huwaij, R.; Mahmoud, N. N.; Kamal, A. Lidocaine Microemulsion-Laden Organogels as Lipid-Based Systems for Topical Delivery. J. Pharm. Innov. 2019, 15, 521–534. DOI: 10.1007/s12247-019-09399-z.
  • Kotta, S.; Khan, A. W.; Ansari, S.; Sharma, R.; Ali, J. Formulation of Nanoemulsion: A Comparison between Phase Inversion Composition Method and High-Pressure Homogenization Method. Drug Deliv. 2015, 22, 455–466. DOI: 10.3109/10717544.2013.866992.
  • Galvão, K.; Vicente, A.; Sobral, P. Development, Characterization, and Stability of O/W Pepper Nanoemulsions Produced by High-Pressure Homogenization. Food Bioprocess Technol. 2018, 11, 355–367. DOI: 10.1007/s11947-017-2016-y.
  • Zhang, Q.; Murawsky, M.; LaCount, T.; Kasting, G. B.; Li, S. K. Transepidermal Water Loss and Skin Conductance as Barrier Integrity Tests. Toxicol In Vitro. 2018, 51, 129–135. DOI: 10.1016/j.tiv.2018.04.009.
  • McCrudden, M. T.; Alkilani, A. Z.; McCrudden, C. M.; McAlister, E.; McCarthy, H. O.; Woolfson, A. D.; Donnelly, R. F. Design and Physicochemical Characterisation of Novel Dissolving Polymeric Microneedle Arrays for Transdermal Delivery of High Dose, Low Molecular Weight Drugs. J. Control Release. 2014, 180, 71–80. DOI: 10.1016/j.jconrel.2014.02.007.
  • Rautio, J.; Nevalainen, T.; Taipale, H.; Vepsäläinen, J.; Gynther, J.; Laine, K.; Järvinen, T. Piperazinylalkyl Prodrugs of Naproxen Improve in Vitro Skin Permeation. Eur. J. Pharm. Sci. 2000, 11, 157–163. DOI: 10.1016/s0928-0987(00)00090-7.
  • Bartosova, L.; Bajgar, J. Transdermal Drug Delivery in Vitro Using Diffusion Cells. Curr. Med. Chem. 2012, 19, 4671–4677. DOI: 10.2174/092986712803306358.
  • Fang, J.-Y.; Sung, K.; Lin, H.-H.; Fang, C.-L. Transdermal Iontophoretic Delivery of Diclofenac Sodium from Various Polymer Formulations: In Vitro and in Vivo Studies. Int. J. Pharm. 1999, 178, 83–92. DOI: 10.1016/S0378-5173(98)00361-5.
  • Cal, K.; Janicki, S.; Sznitowska, M. In Vitro Studies on Penetration of Terpenes from Matrix-Type Transdermal Systems through Human Skin. Int. J. Pharm. 2001, 224, 81–88. DOI: 10.1016/S0378-5173(01)00744-X.
  • Gao, S.; Singh, J. Mechanism of Transdermal Transport of 5-Fluorouracil by Terpenes: carvone, 1, 8-Cineole and Thymol. Int. J. Pharm. 1997, 154, 67–77. DOI: 10.1016/S0378-5173(97)00123-3.
  • Gouda, R.; Baishya, H.; Qing, Z. Application of Mathematical Models in Drug Release Kinetics of Carbidopa and Levodopa ER Tablets. J. Dev. Drugs 2017, 6, 1–8. DOI: 10.4172/2329-6631.1000171.
  • Alkilani, A. Z.; McCrudden, M. T.; Donnelly, R. F. Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the Stratum Corneum. Pharmaceutics 2015, 7, 438–470. DOI: 10.3390/pharmaceutics7040438.
  • Hamed, R.; Al-Adhami, Y.; Abu-Huwaij, R. Concentration of a Microemulsion Influences the Mechanical Properties of Ibuprofen in Situ Microgels. Int. J. Pharm. 2019, 570, 118684. DOI: 10.1016/j.ijpharm.2019.118684.
  • Hamed, R.; Mahmoud, N. N.; Alnadi, S. H.; Alkilani, A. Z.; Hussein, G. Diclofenac Diethylamine Nanosystems-Loaded Bigels for Topical Delivery: Development, Rheological Characterization, and Release Studies. Drug Dev. Ind. Pharm. 2020, 46, 1705–1715. DOI: 10.1080/03639045.2020.1820038.
  • Lane, M. E. Skin Penetration Enhancers. Int. J. Pharm. 2013, 447, 12–21. DOI: 10.1016/j.ijpharm.2013.02.040.
  • Azmi, N. A. N.; Elgharbawy, A. A.; Motlagh, S. R.; Samsudin, N.; Salleh, H. M. Nanoemulsions: Factory for Food, Pharmaceutical and Cosmetics. Processes 2019, 7, 617. DOI: 10.3390/pr7090617.
  • Khan, A. W.; Kotta, S.; Ansari, S. H.; Sharma, R. K.; Ali, J. Self-Nanoemulsifying Drug Delivery System (SNEDDS) of the Poorly Water-Soluble Grapefruit Flavonoid Naringenin: Design, Characterization, in Vitro and in Vivo Evaluation. Drug Deliv. 2015, 22, 552–561. DOI: 10.3109/10717544.2013.878003.
  • Hamed, R.; Basil, M.; AlBaraghthi, T.; Sunoqrot, S.; Tarawneh, O. Nanoemulsion-Based Gel Formulation of Diclofenac Diethylamine: Design, Optimization, Rheological Behavior and in Vitro Diffusion Studies. Pharm. Dev. Technol. 2016, 21, 980–989. DOI: 10.3109/10837450.2015.1086372.
  • Saberi, A. H.; Fang, Y.; McClements, D. J. Fabrication of Vitamin E-Enriched Nanoemulsions: factors Affecting Particle Size Using Spontaneous Emulsification. J. Colloid Interface Sci. 2013, 391, 95–102. DOI: 10.1016/j.jcis.2012.08.069.
  • Wang, S.; Chen, P.; Zhang, L.; Yang, C.; Zhai, G. Formulation and Evaluation of Microemulsion-Based in Situ Ion-Sensitive Gelling Systems for Intranasal Administration of Curcumin. J. Drug Target 2012, 20, 831–840. DOI: 10.3109/1061186X.2012.719230.
  • Jadhav, C.; Kate, V.; Payghan, S. A. Investigation of Effect of Non-Ionic Surfactant on Preparation of Griseofulvin Non-Aqueous Nanoemulsion. J. Nanostruct. Chem. 2015, 5, 107–113. DOI: 10.1007/s40097-014-0141-y.
  • Jutkus, R. A.; Li, N.; Taylor, L. S.; Mauer, L. J. Effect of Temperature and Initial Moisture Content on the Chemical Stability and Color Change of Various Forms of Vitamin C. Int. J. Food Prop. 2015, 18, 862–879. DOI: 10.1080/10942912.2013.805770.
  • Klang, V.; Matsko, N. B.; Valenta, C.; Hofer, F. Electron Microscopy of Nanoemulsions: An Essential Tool for Characterisation and Stability Assessment. Micron 2012, 43, 85–103. DOI: 10.1016/j.micron.2011.07.014.
  • Parveen, R.; Baboota, S.; Ali, J.; Ahuja, A.; Ahmad, S. Stability Studies of Silymarin Nanoemulsion Containing Tween 80 as a Surfactant. J. Pharm. Bioallied Sci. 2015, 7, 321–324. DOI: 10.4103/0975-7406.168037.
  • Farahmand, S.; Tajerzadeh, H.; Farboud, E. Formulation and Evaluation of a Vitamin C Multiple Emulsion. Pharm. Dev. Technol. 2006, 11, 255–261. DOI: 10.1080/10837450500464172.
  • Alexander, A.; Dwivedi, S.; Giri, T. K.; Saraf, S.; Saraf, S.; Tripathi, D. K. Approaches for Breaking the Barriers of Drug Permeation through Transdermal Drug Delivery. J. Control Release 2012, 164, 26–40. DOI: 10.1016/j.jconrel.2012.09.017.
  • Chen, Y.; Quan, P.; Liu, X.; Wang, M.; Fang, L. Novel Chemical Permeation Enhancers for Transdermal Drug Delivery. Asian J. Pharm. Sci. 2014, 9, 51–64. DOI: 10.1016/j.ajps.2014.01.001.
  • Heard, C. M.; Johnson, S.; Moss, G.; Thomas, C. P. In Vitro Transdermal Delivery of Caffeine, Theobromine, Theophylline and Catechin from Extract of Guarana, Paullinia Cupana. Int. J. Pharm. 2006, 317, 26–31. DOI: 10.1016/j.ijpharm.2006.02.042.
  • Mukherjee, B.; Mahapatra, S.; Gupta, R.; Patra, B.; Tiwari, A.; Arora, P. A Comparison between Povidone-Ethylcellulose and Povidone-Eudragit Transdermal Dexamethasone Matrix Patches Based on in Vitro Skin Permeation. Eur. J. Pharm. Biopharm. 2005, 59, 475–483. DOI: 10.1016/j.ejpb.2004.09.009.
  • Lee, A.-R. C.; Tojo, K. Characterization of Skin Permeation of Vitamin C: Theoretical Analysis of Penetration Profiles and Differential Scanning Calorimetry Study. Chem. Pharm. Bull (Tokyo). 1998, 46, 174–177. DOI: 10.1248/cpb.46.174.
  • Sharma, B.; Iqbal, B.; Kumar, S.; Ali, J.; Baboota, S. Resveratrol-Loaded Nanoemulsion Gel System to Ameliorate UV-Induced Oxidative Skin Damage: From in Vitro to in Vivo Investigation of Antioxidant Activity Enhancement. Arch. Dermatol. Res. 2019, 311, 773–793. DOI: 10.1007/s00403-019-01964-3.
  • Prabhu, P.; Shah, S.; Gundad, S. Formulation Development and Investigation of Domperidone Transdermal Patches. Int. J. Pharm. Investig. 2011, 1, 240–246. DOI: 10.4103/2230-973X.93008.
  • Kathe, K.; Kathpalia, H. Film Forming Systems for Topical and Transdermal Drug Delivery. Asian J. Pharm. Sci. 2017, 12, 487–497. DOI: 10.1016/j.ajps.2017.07.004.
  • Mhlanga, N.; Ray, S. S. Kinetic Models for the Release of the Anticancer Drug Doxorubicin from Biodegradable Polylactide/Metal Oxide-Based Hybrids. Int. J. Biol. Macromol. 2015, 72, 1301–1307. DOI: 10.1016/j.ijbiomac.2014.10.038.
  • Akram, M. R.; Ahmad, M.; Abrar, A.; Sarfraz, R. M.; Mahmood, A. Formulation Design and Development of Matrix Diffusion Controlled Transdermal Drug Delivery of Glimepiride. Drug Des. Devel. Ther. 2018, 12, 349–364. DOI: 10.2147/DDDT.S147082.
  • Tsai, M.-J.; Fu, Y.-S.; Lin, Y.-H.; Huang, Y.-B.; Wu, P.-C. The Effect of Nanoemulsion as a Carrier of Hydrophilic Compound for Transdermal Delivery. PloS One. 2014, 9, e102850. DOI: 10.1371/journal.pone.0102850.
  • Harwansh, R. K.; Patra, K. C.; Pareta, S. K.; Singh, J.; Rahman, M. A. Nanoemulsions as Vehicles for Transdermal Delivery of Glycyrrhizin. Braz. J. Pharm. Sci. 2011, 47, 769–778. DOI: 10.1590/S1984-82502011000400014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.