188
Views
5
CrossRef citations to date
0
Altmetric
Articles

Chemical study of the application of nonionic surfactants nonylphenol in delaying the acidizing reaction of carbonate matrices

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1901-1908 | Received 13 Oct 2020, Accepted 05 Jan 2021, Published online: 07 Feb 2021

References

  • Ayirala, S. C.; Boqmi, A.; Alghamdi, A.; AlSofi, A. Dilute Surfactants for Wettability Alteration and Enhanced Oil Recovery in Carbonates. J. Mol. Liq. 2019, 285, 707–715. DOI: 10.1016/j.molliq.2019.04.146.
  • Lee, Y.; Kim, S.; Wang, J.; Sung, W. Relationship between Oil Production and CO2 Storage during Low-Salinity Carbonate Water Injection in Acid Carbonate Reservoirs. J. Ind. Eng. Chem. 2020, 88, 215–223. DOI: 10.1016/j.jiec.2020.04.016.
  • Peng, Y.; Li, Y.; Zhu, G.; Pan, D.; Xu, S.; Wang, X. Mechanisms and Experimental Research of Ion-Matched Waterflooding to Enhance Oil Recovery in Carbonate Reservoirs: A Case of Cretaceous Limestone Reservoirs in Halfaya Oilfield, Middle East. Pet. Explor. Dev. 2019, 46, 1231–1241. DOI: 10.1016/S1876-3804(19)60276-4.
  • Pham, C.; Chang, C.; Jang, Y.; Kutty, A.; Jeong, J. Effect of Faults and Rock Physical Properties on in Situ Stress within Highly Heterogeneous Carbonate Reservoirs. J. Pet. Sci. Eng. 2020, 185, 106601. DOI: 10.1016/j.petrol.2019.106601.
  • Mahdaviara, M.; Rostami, A.; Keivanimehr, F.; Shahbazi, K. Accurate Determination of Permeability in Carbonate Reservoirs Using Gaussian Process Regression. J. Pet. Sci. Eng. 2021, 196, 107807. DOI: 10.1016/j.petrol.2020.107807.
  • Du, X.; Li, Q.; Lu, Z.; Li, P.; Xian, Y.; Xu, Y.; Li, D.; Lu, D. Pressure Transient Analysis for Multi-Vug Composite Fractured Vuggy Carbonate Reservoirs. J. Pet. Sci. Eng. 2020, 193, 107389. DOI: 10.1016/j.petrol.2020.107389.
  • Li Yan, Y.; Xi, Q.; Chibuike Una, C.; Cheng He, B.; Sheng Wu, C.; Long Dou, L. A Novel Acidizing Technology in Carbonate Reservoir: In-Situ Formation of CO2 Foamed Acid and Its Self-Diversion. Colloids Surf. A Physicochem. Eng. Asp. 2019, 580, 123787. DOI: 10.1016/j.colsurfa.2019.123787.
  • Shi, Y.; Yu, L.; Chen, S.; He, Y.; Yang, X.; Duan, L.; Cai, J. Effects of L-Glutamic Acid, N, N-Diacetic Acid as Chelating Agent on Acidification of Carbonate Reservoirs in Acidic Environments. J. Nat. Gas Sci. Eng. 2020, 82, 103494. DOI: 10.1016/j.jngse.2020.103494.
  • Wang, J.; Huang, Y.; Zhou, F.; Song, Z.; Liang, X. Study on Reservoir Damage during Acidizing for High-Temperature and Ultra-Deep Tight Sandstone. J. Pet. Sci. Eng. 2020, 191, 107231. DOI: 10.1016/j.petrol.2020.107231.
  • Zhao, L.; Pan, Y.; Liu, Y.; Meng, X.; Guo, Y.; Liu, P. Research and Performance Evaluation on an HA Integrated Acid System for Sandstone Acidizing. Nat. Gas Ind. B 2018, 5, 156–161. DOI: 10.1016/j.ngib.2018.04.002.
  • Foley, L. L. Spacing of Oil Wells. Trans. AIME 1938, 127, 15–24. DOI: 10.2118/938015-G.
  • Robertson, J. O.; Chilingarian, G. V. Acidizing Oilwells. Dev. Pet. Sci. 1989, 19, 161–190. DOI: 10.1016/S0376-7361(08)70504-1.
  • Sheng, J. J. Introduction to MEOR and Its Field Applications in China. In: Enhanced Oil Recovery Field Case Studies, Elsevier Inc., 2013. pp 543–559. DOI: 10.1016/B978-0-12-386545-8.00019-1.
  • Al-Shammari, H. A.; Nordquist, D. G. Revised BOP Standards and Well-Control Policies. JPT, J. Pet. Technol. 2003, 55, 49–50. DOI: 10.2118/0103-0049-jpt.
  • Fedorov, K. M.; Smirnov, A. S.; Kremleva, T. A. 2010 Carbonate Acidizing: Conjunction. In: Society of Petroleum Engineers (SPE), Moscow, Russia. DOI: 10.2118/136409-ms.
  • Liu, X.; Ormond, A.; Bartko, K.; Li, Y.; Ortoleva, P. A Geochemical Reaction-Transport Simulator for Matrix Acidizing Analysis and Design. J. Pet. Sci. Eng. 1997, 17, 181–196. DOI: 10.1016/S0920-4105(96)00064-2.
  • Yoo, H.; Park, J.; Lee, Y.; Lee, J. An Experimental Investigation into the Effect of Pore Size Distribution on the Acid-Rock Reaction in Carbonate Acidizing. J. Pet. Sci. Eng. 2019, 180, 504–517. DOI: 10.1016/j.petrol.2019.05.061.
  • Liu, P.; Yan, X.; Yao, J.; Sun, S. Modeling and Analysis of the Acidizing Process in Carbonate Rocks Using a Two-Phase Thermal-Hydrologic-Chemical Coupled Model. Chem. Eng. Sci. 2019, 207, 215–234. DOI: 10.1016/j.ces.2019.06.017.
  • Penny, G. S.; Pursley, J. T.; Holcomb, D. 2005 The Application of Microemulsion Additives in Drilling and Stimulation Results in Enhanced Gas Production. In: SPE Prod. Oper. Symp., Society of Petroleum Engineers, Oklahoma City, Oklahoma. DOI: 10.2118/94274-MS.
  • Bera, A.; Kumar, T.; Ojha, K.; Mandal, A. Screening of Microemulsion Properties for Application in Enhanced Oil Recovery. Fuel 2014, 121, 198–207. DOI: 10.1016/j.fuel.2013.12.051.
  • de Castro Dantas, T. N.; de Oliveira, A. C.; de Souza, T. T. C.; dos Santos Lucas, C. R.; de Andrade Araújo, E.; Aum, P. T. P. Experimental Study of the Effects of Acid Microemulsion Flooding to Enhancement of Oil Recovery in Carbonate Reservoirs. J. Pet. Explor. Prod. Technol. 2019, 10, 1127–1135. DOI: 10.1007/s13202-019-00754-x.
  • da Silva, D. C.; Barbosa de Araújo, C. R.; de, J.; Freitas, C. O.; Felipe Rodrigues, M. A.; de, A.; Neto, O. W. Formulation of New Microemulsion Systems Containing Produced Water for Removal of Filter Cake from Olefin-Based Drilling Fluid. J. Pet. Sci. Eng. 2020, 193, 107425. DOI: 10.1016/j.petrol.2020.107425.
  • Fredd, C. N.; Hoefner, M. L.; Fogler, H. S. Microemulsion Applications in Carbonate Reservoir Stimulation. In: Prop. Uses Microemulsions, InTech, 2017. DOI: 10.5772/65973.
  • Panthi, K.; Weerasooriya, U.; Mohanty, K. K. Enhanced Recovery of a Viscous Oil with a Novel Surfactant. Fuel 2020, 282, 118882. DOI: 10.1016/j.fuel.2020.118882.
  • Grządka, E.; Matusiak, J.; Godek, E. Alginic Acid as a Stabilizer of Zirconia Suspensions in the Presence of Cationic Surfactants. Carbohydr. Polym. 2020, 246, 116634. DOI: 10.1016/j.carbpol.2020.116634.
  • Lucas, C. R. d S.; Aum, Y. K. P. G.; de Araújo, E. A.; de Castro Dantas, T. N.; Araújo, E. A.; Sousa, T. N.; Aum, P. T. P. Investigating the Fluid–Solid Interaction of Acid Nonionic Nanoemulsion with Carbonate Porous Media. Molecules 2020, 25, 1475. DOI: 10.3390/molecules25061475.
  • Guzzo, P. L.; Marinho de Barros, F. B.; de Arruda Tino, A. A. Effect of Prolonged Dry Grinding on Size Distribution, Crystal Structure and Thermal Decomposition of Ultrafine Particles of Dolostone. Powder Technol. 2019, 342, 141–148. DOI: 10.1016/j.powtec.2018.09.064.
  • Oliveira, D. P.; Sartor, L. R.; Souza Júnior, V. S.; Corrêa, M. M.; Romero, R. E.; Andrade, G. R. P.; Ferreira, T. O. Weathering and Clay Formation in Semi-Arid Calcareous Soils from Northeastern Brazil. Catena 2018, 162, 325–332. DOI: 10.1016/j.catena.2017.10.030.
  • Santos, R. G.; Loh, W.; Bannwart, A. C.; Trevisan, O. V. An Overview of Heavy Oil Properties and Its Recovery and Transportation Methods. Braz. J. Chem. Eng. 2014, 31, 571–590. DOI: 10.1590/0104-6632.20140313s00001853.
  • Santos, F. K. G.; Neto, E. L. B.; Moura, M. C. P. A.; Dantas, T. N. C.; Neto, A. A. D. Molecular Behavior of Ionic and Nonionic Surfactants in Saline Medium. Colloids Surf. A Physicochem. Eng. Asp. 2009, 333, 156–162. DOI: 10.1016/j.colsurfa.2008.09.040.
  • Spiering, V. J.; Lutzki, J.; Gradzielski, M. Thermodynamics of Micellization of Nonionic Surfactants—The Effect of Incorporating CO2 Moieties into the Head Group. J. Colloid Interface Sci. 2021, 581, 794–805. DOI: 10.1016/j.jcis.2020.07.141.
  • Wang, C.; Meng, R.; Xiao, F.; Wang, R. Use of Nanoemulsion for Effective Removal of Both Oil-Based Drilling Fluid and Filter Cake. J. Nat. Gas Sci. Eng. 2016, 36, 328–338. DOI: 10.1016/j.jngse.2016.10.035.
  • Saxena, N.; Kumar, A.; Mandal, A. Adsorption Analysis of Natural Anionic Surfactant for Enhanced Oil Recovery: The Role of Mineralogy, Salinity, Alkalinity and Nanoparticles. J. Pet. Sci. Eng. 2019, 173, 1264–1283. DOI: 10.1016/j.petrol.2018.11.002.
  • Saxena, N.; Kumar, S.; Mandal, A. Adsorption Characteristics and Kinetics of Synthesized Anionic Surfactant and Polymeric Surfactant on Sand Surface for Application in Enhanced Oil Recovery. Asia-Pac. J. Chem. Eng. 2018, 13, e2211. DOI: 10.1002/apj.2211.
  • Das, S.; Katiyar, A.; Rohilla, N.; Nguyen, Q.; Bonnecaze, R. T. Universal Scaling of Adsorption of Nonionic Surfactants on Carbonates Using Cloud Point Temperatures. J. Colloid Interface Sci. 2020, 577, 431–440. DOI: 10.1016/j.jcis.2020.05.063.
  • Fanun, M. A Study of the Properties of Mixed Nonionic Surfactants Microemulsions by NMR, SAXS, Viscosity and Conductivity. J. Mol. Liq. 2008, 142, 103–110. DOI: 10.1016/j.molliq.2008.05.006.
  • Uchiyama, H.; Abe, M.; Ogino, K. Viscosities of Anionic-Nonionic Mixed Surfactant Systems. J. Colloid Interface Sci. 1990, 138, 69–73. DOI: 10.1016/0021-9797(90)90180-V.
  • Kumar, S.; Panigrahi, P.; Saw, R. K.; Mandal, A. Interfacial Interaction of Cationic Surfactants and Its Effect on Wettability Alteration of Oil-Wet Carbonate Rock. Energy Fuels 2016, 30, 2846–2857. DOI: 10.1021/acs.energyfuels.6b00152.
  • Pillai, P.; Mandal, A. Wettability Modification and Adsorption Characteristics of Imidazole-Based Ionic Liquid on Carbonate Rock: Implications for Enhanced Oil Recovery. Energy Fuels 2019, 33, 727–738. DOI: 10.1021/acs.energyfuels.8b03376.
  • Tupinamba Lima, M.; Kurt-Zerdeli, S. N.; Brüggemann, D.; Spiering, V. J.; Gradzielski, M.; Schomäcker, R. The Dynamics of Surface Adsorption and Foam Formation of Carbonate Modified Nonionic Surfactants. Colloids Surf. A Physicochem. Eng. Asp. 2020, 588, 124386. DOI: 10.1016/j.colsurfa.2019.124386.
  • Schramm, L. L.; Green, W. H. F. The Influence of Marangoni Surface Elasticity on Gas Mobility Reductions by Foams in Porous Media. Colloids Surf. A Physicochem. Eng. Asp. 1995, 94, 13–28. DOI: 10.1016/0927-7757(94)02997-7.
  • Dantas, T. N. C.; Santanna, V. C.; Souza, T. T. C.; Lucas, C. R. S.; Dantas Neto, A. A.; Aum, P. T. P. Microemulsions and Nanoemulsions Applied to Well Stimulation and Enhanced Oil Recovery (EOR). BJPG 2019, 12, 251–265. DOI: 10.5419/bjpg2018-0023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.