169
Views
2
CrossRef citations to date
0
Altmetric
Articles

Effect of surfactant crowding on clathrate hydrate growth

, , &
Pages 2092-2106 | Received 18 Nov 2020, Accepted 03 Apr 2021, Published online: 05 May 2021

References

  • Sloan, E. D.; Koh, C. Clathrate Hydrates of Natural Gases; CRC Press: Boca Raton, FL, 2007. DOI: 10.1201/9781420008494.
  • Liu, B.; Yuan, Q.; Su, K. H.; Yang, X.; Wu, B. C.; Sun, C. Y.; Chen, G. J. Experimental Simulation of the Exploitation of Natural Gas Hydrate. Energies 2012, 5, 466–493. DOI: 10.3390/en5020466.
  • Babu, P.; Kumar, R.; Linga, P. Unusual Behavior of Propane as a Co-Guest during Hydrate Formation in Silica Sand: Potential Application to Seawater Desalination and Carbon Dioxide Capture. Chem. Eng. Sci. 2014, 117, 342–351. DOI: 10.1016/j.ces.2014.06.044.
  • Khetan, A.; Das, M. K.; Muralidhar, K. Analysis of Methane Production from a Porous Reservoir via Simultaneous Depressurization and CO2 Sequestration. Spec. Top. Rev. Porous Media 2013, 4, 237–252. DOI: 10.1615/SpecialTopicsRevPorousMedia.v4.i3.40.
  • Sloan, E. D. Fundamental Principles and Applications of Natural Gas Hydrates. Nature 2003, 426, 353–359. DOI: 10.1038/nature02135.
  • Maslin, M.; Owen, M.; Betts, R.; Day, S.; Jones, T. D.; Ridgwell, A. Gas Hydrates: Past and Future Geohazard? Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 2369–2393. DOI: 10.1098/rsta.2010.0065.
  • Chong, Z. R.; Yang, S. H. B.; Babu, P.; Linga, P.; Li, X. S. Review of Natural Gas Hydrates as an Energy Resource. Prospects and Challenges. Appl. Energy 2016, 162, 1633–1652. DOI: 10.1016/j.apenergy.2014.12.061.
  • Ravesh, R.; Ansari, A. A.; Mohapatra, S.; Panigrahi, P. K.; Das, M. K. 2019 Methane Hydrate Dissociation in Porous Media Using Multistep Depressurization: An Experimental Study. In Proceeding of Proceedings of the 25th National and 3rd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2019); Begellhouse: Connecticut, pp 217–220. DOI: 10.1615/IHMTC-2019.370.
  • Collett, T. S.; Boswell, R.; Cochran, J. R.; Kumar, P.; Lall, M.; Mazumdar, A.; Ramana, M. V.; Ramprasad, T.; Riedel, M.; Sain, K.; et al. Geologic Implications of Gas Hydrates in the Offshore of India: Results of the National Gas Hydrate Program Expedition 01. Mar. Pet. Geol. 2014, 58, 3–28. DOI: 10.1016/j.marpetgeo.2014.07.021.
  • Taheri, Z.; Shabani, M. R.; Nazari, K.; Mehdizaheh, A. Journal of Natural Gas Science and Engineering Natural Gas Transportation and Storage by Hydrate Technology: Iran Case Study. J. Nat. Gas Sci. Eng. 2014, 21, 846–849. DOI: 10.1016/j.jngse.2014.09.026.
  • Zhong, Y.; Rogers, R. E. Surfactant Effects on Gas Hydrate Formation. Chem. Eng. Sci. 2000, 55, 4175–4187. DOI: 10.1016/S0009-2509(00)00072-5.
  • Freer, E. M.; Selim, M. S.; Sloan, E. D. Methane Hydrate FIlm Growth Kinetics. Fluid Phase Equilib. 2001, 185, 65–75. DOI: 10.1016/S0378-3812(01)00457-5.
  • Park, S. S.; An, E. J.; Lee, S. B.; Chun, W. g.; Kim, N. J. Characteristics of Methane Hydrate Formation in Carbon Nanofluids. J. Ind. Eng. Chem. 2012, 18, 443–448. DOI: 10.1016/j.jiec.2011.11.045.
  • Trivedi, V.; Dalvi, S. V. Enhancing CO2 Hydrate Formation: Effect of Coconut Fibers on Nucleation Kinetics of CO2 Hydrates. J. Cryst. Growth 2020, 549, 125865. DOI: 10.1016/j.jcrysgro.2020.125865.
  • Abedi-Farizhendi, S.; Hosseini, M.; Iranshahi, M.; Mohammadi, A.; Manteghian, M.; Mohammadi, A. H. Kinetics of CO2 Hydrate Formation in Coffee Aqueous Solution: Application in Coffee Concentration. J. Dispers. Sci. Technol. 2020, 41, 895–901. DOI: 10.1080/01932691.2019.1614031.
  • Kumar, D.; Rub, M. A. Study of Reaction Rate between Zinc(II)-Histidine [Zn(II)-His]+Complex and Ninhydrin: Effect of Three Dicationic Gemini (Alkanediyl-α,ω-Type) Surfactants. Ind. Eng. Chem. Res. 2020, 59, 11072–11079. DOI: 10.1021/acs.iecr.0c00678.
  • Kumar, D.; Neo, K. E.; Rub, M. A.; Tan, Z. L.; Beh, W. L.; Wong, H. L. Interaction of Metal–Dipeptide Complex with Ninhydrin in the Absence and Presence of Conventional CTAB Surfactant. J. Dispers. Sci. Technol. 2015, 36, 1657–1664. DOI: 10.1080/01932691.2014.982286.
  • Kumar, D.; Abdul Rub, M. Influence of Dimeric Gemini Surfactant Micelles on the Study of Nickel-Glycylleucine Dipeptide and Ninhydrin. J. Dispers. Sci. Technol. 2020, 41, 1559–1567. DOI: 10.1080/01932691.2019.1627886.
  • Kumar, D.; Akram, M. K-u-D. Kinetic and Mechanistic Studies on [Zn(II)-Gly-Phe]+-Ninhydrin Reaction in Aqueous and Cationic CTAB Surfactant Micelles. J. Dispers. Sci. Technol. 2014, 35, 1709–1716. DOI: 10.1080/01932691.2013.870043.
  • Kumar, D.; Rub, M. A. Catalytic Influence of 16-s-16 Gemini Surfactants on the Rate Constant of Histidine and Ninhydrin. R. Soc. Open Sci. 2020, 7, 191648. DOI: 10.1098/rsos.191648.
  • Kumar, D.; Rub, M. A. Influence of Dicationic Quaternary Ammonium Gemini Surfactant System on Metal-Amino Acid Complex-Ninhydrin Reaction. Mater. Chem. Phys. 2020, 248, 122926. DOI: 10.1016/j.matchemphys.2020.122926.
  • Kumar, A.; Bhattacharjee, G.; Kulkarni, B. D.; Kumar, R. Role of Surfactants in Promoting Gas Hydrate Formation. Ind. Eng. Chem. Res. 2015, 54, 12217–12232. DOI: 10.1021/acs.iecr.5b03476.
  • Zhang, J. S.; Lee, S.; Lee, J. W. Kinetics of Methane Hydrate Formation from SDS Solution. Ind. Eng. Chem. Res. 2007, 46, 6353–6359. DOI: 10.1021/ie070627r.
  • Gayet, P.; Dicharry, C.; Marion, G.; Graciaa, A.; Lachaise, J.; Nesterov, A. Experimental Determination of Methane Hydrate Dissociation Curve up to 55 MPa by Using a Small Amount of Surfactant as Hydrate Promoter. Chem. Eng. Sci. 2005, 60, 5751–5758. DOI: 10.1016/j.ces.2005.04.069.
  • Watanabe, K.; Imai, S.; Mori, Y. H. Surfactant Effects on Hydrate Formation in an Unstirred Gas/Liquid System: An Experimental Study Using HFC-32 and Sodium Dodecyl Sulfate. Chem. Eng. Sci. 2005, 60, 4846–4857. DOI: 10.1016/j.ces.2005.03.043.
  • Veluswamy, H. P.; Chen, J. Y.; Linga, P. Surfactant Effect on the Kinetics of Mixed Hydrogen/Propane Hydrate Formation for Hydrogen Storage as Clathrates. Chem. Eng. Sci. 2015, 126, 488–499. DOI: 10.1016/j.ces.2014.12.052.
  • Wang, F.; Jia, Z. Z.; Luo, S. J.; Fu, S. F.; Wang, L.; Shi, X. S.; Wang, C. S.; Guo, R. B. Effects of Different Anionic Surfactants on Methane Hydrate Formation. Chem. Eng. Sci. 2015, 137, 896–903. DOI: 10.1016/j.ces.2015.07.021.
  • Lo, C.; Zhang, J. S.; Couzis, A.; Somasundaran, P.; Lee, J. W. Adsorption of Cationic and Anionic Surfactants on Cyclopentane Hydrates. J. Phys. Chem. C 2010, 114, 13385–13389. DOI: 10.1021/jp102846d.
  • Zhang, J. S.; Lo, C.; Somasundaran, P.; Lu, S.; Couzis, A.; Lee, J. W. Adsorption of Sodium Dodecyl Sulfate at THF Hydrate/Liquid Interface. J. Phys. Chem. C 2008, 112, 12381–12385. DOI: 10.1021/jp801963c.
  • Mitarai, M.; Kishimoto, M.; Suh, D.; Ohmura, R. Surfactant Effects on the Crystal Growth of Clathrate Hydrate at the Interface of Water and Hydrophobic-Guest Liquid. Cryst. Growth Des. 2015, 15, 812–821. DOI: 10.1021/cg501613a.
  • Li, M.; Tian, J.; Liu, C.; Geng, K. Effects of Sorbitan Monooleate on the Interactions between Cyclopentane Hydrate Particles and Water Droplets. J. Dispers. Sci. Technol. 2018, 39, 360–366. DOI: 10.1080/01932691.2017.1318706.
  • Wang, W.; Huang, Q.; Zheng, H.; Wang, Q.; Zhang, D.; Cheng, X.; Li, R. Effect of Wax on Hydrate Formation in Water-in-Oil Emulsions. J. Dispers. Sci. Technol. 2020, 41, 1821–1830. DOI: 10.1080/01932691.2019.1637751.
  • Karanjkar, P. U.; Lee, J. W.; Morris, J. F. Surfactant Effects on Hydrate Crystallization at the Water-Oil Interface: Hollow-Conical Crystals. Cryst. Growth Des. 2012, 12, 3817–3824. DOI: 10.1021/cg300255g.
  • Kishimoto, M.; Iijima, S.; Ohmura, R. Crystal Growth of Clathrate Hydrate at the Interface between Seawater and Hydrophobic-Guest Liquid: Effect of Elevated Salt Concentration. Ind. Eng. Chem. Res. 2012, 51, 5224–5229. DOI: 10.1021/ie202785z.
  • Han, S.; Rhee, Y. W.; Kang, S. P. Investigation of Salt Removal Using Cyclopentane Hydrate Formation and Washing Treatment for Seawater Desalination. Desalination 2017, 404, 132–137. DOI: 10.1016/j.desal.2016.11.016.
  • Nakajima, M.; Ohinura, R.; Mori, Y. H. Clathrate Hydrate Formation from Cyclopentane-in-Water Emulsions. Ind. Eng. Chem. Res. 2008, 47, 8933–8939. DOI: 10.1021/ie800949k.
  • Karanjkar, P. U.; Lee, J. W.; Morris, J. F. Calorimetric Investigation of Cyclopentane Hydrate Formation in an Emulsion. Chem. Eng. Sci. 2012, 68, 481–491. DOI: 10.1016/j.ces.2011.10.014.
  • Sjöblom, J.; Øvrevoll, B.; Jentoft, G. H.; Lesaint, C.; Palermo, T.; Sinquin, A.; Gateau, P.; Barré, L.; Subramanian, S.; Boxall, J.; et al. Investigation of the Hydrate Plugging and Non-Plugging Properties of Oils. J. Dispers. Sci. Technol. 2010, 31, 1100–1119. DOI: 10.1080/01932690903224698.
  • Nobuyuki, O. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66.
  • Zhang, Y.; Debenedetti, P. G.; PruD’Homme, R. K.; Pethica, B. A. Differential Scanning Calorimetry Studies of Clathrate Hydrate Formation. J. Phys. Chem. B 2004, 108, 16717–16722. DOI: 10.1021/jp047421d.
  • Aman, Z. M.; Dieker, L. E.; Aspenes, G.; Sum, A. K.; Sloan, E. D.; Koh, C. A. Influence of Model Oil with Surfactants and Amphiphilic Polymers on Cyclopentane Hydrate Adhesion Forces. Energy Fuels 2010, 24, 5441–5445. DOI: 10.1021/ef100762r.
  • Thomas, F.; Dalmazzone, D.; Morris, J. F. Contact Angle Measurements on Cyclopentane Hydrates. Chem. Eng. Sci. 2021, 229, 116022. DOI: 10.1016/j.ces.2020.116022.
  • Dann, K.; Rosenfeld, L. Surfactant Effect on Hydrate Crystallization at the Oil-Water Interface. Langmuir 2018, 34, 6085–6094. DOI: 10.1021/acs.langmuir.8b00333.
  • Innes-Gold, S. N.; Luby, C. J.; Mace, C. R. Experimental and Theoretical Validation of System Variables That Control the Position of Particles at the Interface of Immiscible Liquids. Langmuir 2018, 34, 7673–7680. DOI: 10.1021/acs.langmuir.8b01197.
  • Sherman, H.; Nguyen, A. V.; Bruckard, W. An Analysis of Bubble Deformation by a Sphere Relevant to the Measurements of Bubble-Particle Contact Interaction and Detachment Forces. Langmuir 2016, 32, 12022–12030. DOI: 10.1021/acs.langmuir.6b02985.
  • Keller, J. B. Surface Tension Force on a Partly Submerged Body. Phys. Fluids 1998, 29, 125–143. DOI: 10.1063/1.869820.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.