300
Views
8
CrossRef citations to date
0
Altmetric
Articles

Investigation on the effects of cationic surface active ionic liquid/anionic surfactant mixtures on the interfacial tension of water/crude oil system and their application in enhancing crude oil recovery

, , , , &
Pages 214-224 | Received 08 Feb 2021, Accepted 05 Jun 2021, Published online: 21 Jun 2021

References

  • Schexnayder, P.; Baudoin, N.; Chirdon, W. M. Enhanced Oil Recovery from Denatured Algal Biomass: Synergy between Conventional and Emergent Fuels. Fuel 2021, 287, 119533. DOI: 10.1016/j.fuel.2020.119533.
  • Babadagli, T. Philosophy of EOR. J. Petrol. Sci. Eng. 2020, 118, 106930.
  • Foroozesh, J.; Kumar, S. Nanoparticles Behaviors in Porous Media: Application to Enhanced Oil Recovery. J. Mol. Liq. 2020, 316, 113876. DOI: 10.1016/j.molliq.2020.113876.
  • Zhang, G. Y.; Yu, J. J. Effect of Commonly Used EOR Polymers on Low Concentration Surfactant Phase Behaviors. Fuel 2021, 286, 119465. DOI: 10.1016/j.fuel.2020.119465.
  • Wijaya, N.; Sheng, J. J. Uncertainty Quantification of Shale Capillary Desaturation Curves for Surfactant EOR in Shale through Fracturing Fluids Using Predictive Modeling. Fuel 2021, 283, 118857. DOI: 10.1016/j.fuel.2020.118857.
  • Kang, W.; Sarsenbekuly, B.; Turtabayev, S.; Yang, H.; Zhu, T.; Aidarova, S.; Gabdullin, M.; Ospanova, Z.; Issakhov, M. Study on the Influence of Emulsification Property of Functional Polymers on Enhanced Oil Recovery and Its Mechanism. J. Petrol. Sci. Eng. 2020, 185, 106627. DOI: 10.1016/j.petrol.2019.106627.
  • Massarweh, O.; Abushaikha, A. S. The Use of Surfactants in Enhanced Oil Recovery: A Review of Recent Advances. Energy Rep. 2020, 6, 3150–3178. DOI: 10.1016/j.egyr.2020.11.009.
  • Lian, P.; Jia, H.; Wei, X.; Han, Y.; Wang, Q.; Dai, J.; Wang, D.; Wang, S.; Tian, Z.; Yan, H. Effects of Zwitterionic Surfactant Adsorption on the Component Distribution in the Crude Oil Droplet: A Molecular Simulation Study. Fuel 2021, 283, 119252. DOI: 10.1016/j.fuel.2020.119252.
  • Zhao, M.; Lv, W.; Li, Y.; Dai, C.; Wang, X.; Zhou, H.; Zou, C.; Gao, M.; Zhang, Y.; Wu, Y. Study on the Synergy between Silica Nanoparticles and Surfactants for Enhanced Oil Recovery during Spontaneous Imbibition. J. Mol. Liq. 2018, 261, 373–378. DOI: 10.1016/j.molliq.2018.04.034.
  • Belhaj, A. F.; Elraies, K. A.; Mahmood, S. M.; Zulkifli, N. N.; Akbari, S.; Hussien, O. S. The Effect of Surfactant Concentration, Salinity, Temperature, and Ph on Surfactant Adsorption for Chemical Enhanced Oil Recovery: A. J. Petrol. Explor. Prod. Technol. 2020, 10, 125–137. DOI: 10.1007/s13202-019-0685-y.
  • Bassir, S. M.; Shadizadeh, S. R. Static Adsorption of a New Cationic Biosurfactant on Carbonate Minerals: Application to EOR. Petrol. Sci. Technol. 2020, 38, 462–471. DOI: 10.1080/10916466.2020.1727922.
  • Nasirpour, N.; Mohammadpourfard, M.; Heris, S. Z. Ionic Liquids: Promising Compounds for Sustainable Chemical Processes and Applications. Chem. Eng. Res. Des. 2020, 160, 264–300. DOI: 10.1016/j.cherd.2020.06.006.
  • Nandwani, S. K.; Malek, N. I.; Chakraborty, M.; Gupta, S. A Comprehensive Study Based on the Application of Different Genre of Surface-Active Ionic Liquid and Alkali Combination Systems in Surfactant Flooding. Energy Fuels 2020, 34, 9411–9425. DOI: 10.1021/acs.energyfuels.0c01331.
  • Nandwani, S. K.; Malek, N. I.; Chakraborty, M.; Gupta, S. Insight into the Application of Surface-Active Ionic Liquids in Surfactant Based Enhanced Oil Recovery Processes-a Guide Leading to Research Advances. Energy Fuels 2020, 34, 6544–6557. DOI: 10.1021/acs.energyfuels.0c00343.
  • Kharazi, M.; Saien, J.; Yarie, M.; Zolfigol, M. A. The Superior Effects of a Long Chain Gemini Ionic Liquid on the Interfacial Tension, Emulsification and Oil Displacement of Crude Oil-Water. J. Petrol. Sci. Eng. 2020, 195, 107543. DOI: 10.1016/j.petrol.2020.107543.
  • Sun, N. N.; Yao, K. S.; Wang, C.; Zhao, C. C.; Lu, W. W.; Zhao, S.; Wang, H. Y.; Wang, J. J. Synthesis of Various Gold Hierarchical Architectures Assisted by Functionalized Ionic Liquids in Aqueous Solutions and Their Efficient SERS Responses. J. Colloid Interface Sci. 2018, 531, 194–203. DOI: 10.1016/j.jcis.2018.07.038.
  • Li, Y.; Wang, J. J.; Liu, X. M.; Zhang, S. J. Towards a Molecular Understanding of Cellulose Dissolution in Ionic Liquids: Anion/Cation Effect, Synergistic Mechanism and Physicochemical Aspects. Chem. Sci. 2018, 9, 4027–4043. DOI: 10.1039/c7sc05392d.
  • Chen, Y. H.; Wang, H. Y.; Pei, Y. C.; Wang, J. J. A Green Separation Strategy for Neodymium (III) from Cobalt (II) and Nickel (II) Using an Ionic Liquid-Based Aqueous Two-Phase System. Talanta 2018, 182, 450–455. DOI: 10.1016/j.talanta.2018.02.018.
  • Hezave, A. Z.; Dorostkar, S.; Ayatollahi, S.; Nabipour, M.; Hemmateenejad, B. Effect of Different Families (Imidazolium and Pyridinium) of Ionic Liquids-Based Surfactants on Interfacial Tension of Water/Crude Oil System. Fluid Phase Equilib 2013, 360, 139–145. DOI: 10.1016/j.fluid.2013.09.025.
  • Shah, M. U.; Moniruzzaman, M.; Sivapragasam, M.; Talukder, M.; Yusup, S. B.; Goto, M. A Binary Mixture of a Biosurfactant and an Ionic Liquid Surfactant as a Green Dispersant for Oil Spill Remediation. J. Mol. Liq. 2019, 280, 111–119. DOI: 10.1016/j.molliq.2019.02.049.
  • Nandwani, S. K.; Chakraborty, M.; Bart, H. J.; Gupta, S. Synergism, Phase Behaviour and Characterization of Ionic Liquid-Nonionic Surfactant Mixture in High Salinity Environment of Oil Reservoirs. Fuel 2018, 229, 167–179. DOI: 10.1016/j.fuel.2018.05.021.
  • Sakthivel, S.; Velusamy, S.; Gardas, R. L.; Sangwai, J. S. Use of Aromatic Ionic Liquids in the Reduction of Surface Phenomena of Crude Oil-Water System and Their Synergism with Brine. Ind. Eng. Chem. Res. 2015, 54, 968–978. DOI: 10.1021/ie504331k.
  • Sakthivel, S.; Gardas, R. L.; Sangwai, J. S. Effect of Alkyl Ammonium Ionic Liquids on the Interfacial Tension of the Crude Oil-Water System and Their Use for the Enhanced Oil Recovery Using Ionic Liquid-Polymer Flooding. Energy Fuels 2016, 30, 2514–2523. DOI: 10.1021/acs.energyfuels.5b03014.
  • Sakthivel, S.; Velusamy, S.; Nair, V. C.; Sharma, T.; Sangwai, J. S. Interfacial Tension of Crude Oil-Water System with Imidazolium and Lactam-Based Ionic Liquids and Their Evaluation for Enhanced Oil Recovery under High Saline Environment. Fuel 2017, 191, 239–250. DOI: 10.1016/j.fuel.2016.11.064.
  • Sugirtha, V.; Sivabalan, S.; Jitendra, S. S. Effect of Imidazolium-Based Ionic Liquids on the Interfacial Tension of the Alkane-Water System and Its Influence on the Wettability Alteration of Quartz under Saline Conditions through Contact Angle Measurements. Ind. Eng. Chem. Res. 2017, 56, 13521–13534.
  • Lago, R.; Iria, R.; Oscar, R.; Alberto, A.; Ana, S. Characterization and Interfacial Properties of the Surfactant Ionic Liquid 1-Dodecyl-3-Methyl Imidazolium Acetate for Enhanced Oil Recovery. RSC Adv. 2015, 5, 37392–37398.
  • Shilpa, K. N.; Naved, I. M.; Lad, V. N.; Mousumi, C.; Smita, G. Study on Interfacial Properties of Imidazolium Ionic Liquids as Surfactant and Their Application in Enhanced Oil Recovery. Colloids Surf. A Physicochem. Eng. Asp 2017, 516, 383–393. DOI: 10.1016/j.colsurfa.2016.12.037.
  • Abbas, K. M.; Mansooreh, R.; Siamak, M.; Iman, N.; Amir, H. M. Wettability Alteration and Interfacial Tension (IFT) Reduction in Enhanced Oil Recovery (EOR) Process by Ionic Liquid Flooding. J. Mol. Liq. 2017, 248, 153–162.
  • Yousefi, M.; Naseri, A.; Abdouss, M.; Miran, B. Synthesis and Characterization of Eight Hydrophilic Imidazolium-Based Ionic Liquids and Their Application on Enhanced Oil Recovery. J. Mol. Liq. 2017, 248, 370–377. DOI: 10.1016/j.molliq.2017.10.069.
  • Pillai, P.; Kumar, A.; Mandal, A. Mechanistic Studies of Enhanced Oil Recovery by Imidazolium-Based Ionic Liquids as Novel Surfactants. J. Ind. Eng. Chem. 2018, 63, 262–274. DOI: 10.1016/j.jiec.2018.02.024..
  • Zhou, H. T.; Zhu, Y. G.; Peng, T.; Song, Y. L.; An, J. B.; Leng, X.; Yi, Z. W.; Sun, Y. Q.; Jia, H. Systematic Study of the Effects of Novel Halogen-Free Anionic Surface Active Ionic Liquid on Interfacial Tension of Water/Model Oil System. J. Mol. Liq. 2016, 223, 516–520. DOI: 10.1016/j.molliq.2016.08.080.
  • Zhou, H. T.; Liang, Y. P.; Huang, P.; Liang, T.; Wu, H. Y.; Lian, P.; Leng, X.; Jia, C. Q.; Zhu, Y. G.; Jia, H. Systematic Investigation of Ionic Liquid-Type Gemini Surfactants and Their Abnormal Salt Effects on the Interfacial Tension of a Water/Model Oil System. J. Mol. Liq. 2018, 249, 33–39. DOI: 10.1016/j.molliq.2017.11.004.
  • Jia, H.; Lian, P.; Liang, Y. P.; Zhu, Y. G.; Huang, P.; Wu, H. Y.; Leng, X.; Zhou, H. T. Systematic Investigation of the Effects of Zwitterionic Surface Active Ionic Liquids on the Interfacial Tension of a Water/Crude Oil System and their Application to Enhance Crude Oil Recovery. Energy Fuels 2018, 32, 154–160. DOI: 10.1021/acs.energyfuels.7b02746.
  • Kumar, A.; Mandal, A. Synthesis and Physiochemical Characterization of Zwitterionic Surfactant for Application in Enhanced Oil Recovery. J. Mol. Liq. 2017, 243, 61–71. DOI: 10.1016/j.molliq.2017.08.032.
  • Pillai, P.; Mandal, A. Wettability Modification and Adsorption Characteristics of Imidazole-Based Ionic Liquid on Carbonate Rock: Implications for Enhanced Oil Recovery. Energy Fuels 2019, 33, 727–738. DOI: 10.1021/acs.energyfuels.8b03376.
  • Pillai, P.; Pal, N.; Mandal, A. Synthesis, Characterization, Surface Properties and Micellization Behaviour of Imidazolium-Based Ionic Liquids. J Surfactants Deterg. 2017, 20, 1321–1335. DOI: 10.1007/s11743-017-2021-1.
  • Cao, C.; Lei, J. M.; Zhang, L.; Du, F. P. Equilibrium and Dynamic Interfacial Properties of protein/ionic-liquid-type surfactant solutions at the decane/water interface. Langmuir 2014, 30, 13744–13753. DOI: 10.1021/la502890w.
  • Luo, G. X.; Qi, X. J.; Han, C. Y.; Liu, C. S.; Gui, J. Z. Salt Effect on Mixed Micelle and Interfacial Properties of Conventional Cationic Surfactants and the Ionic Liquid Surfactant 1-Tetradecyl-3-Methylimidazolium Bromide ([c14mim]Br). J Surfactants Deterg. 2013, 16, 531–538. DOI: 10.1007/s11743-012-1431-3.
  • Chabba, S.; Kumar, S.; Aswal, V. K.; Kang, T. S.; Mahajan, R. K. Interfacial and Aggregation Behavior of Aqueous Mixtures of Imidazolium Based Surface Active Ionic Liquids and Anionic Surfactant Sodium Dodecylbenzenesulfonate. Colloids Surf. A Physicochem. Eng. Asp. 2015, 472, 9–20. DOI: 10.1016/j.colsurfa.2015.02.032.
  • Yousefi, A.; Aslanzadeh, S. A.; Akbari, J. Effect of 1-Ethyl-3-Methylimidazolium Bromide on Interfacial and Aggregation Behavior of Mixed Cationic and Anionic Surfactants. J. Mol. Liq. 2016, 219, 637–642. DOI: 10.1016/j.molliq.2016.03.076.
  • Jia, H.; Leng, X.; Hu, M.; Song, Y. L.; Wu, H. Y.; Lian, P.; Liang, Y. P.; Zhu, Y. G.; Liu, J. P.; Zhou, H. T. Systematic Investigation of the Effects of Mixed Cationic/Anionic Surfactants on the Interfacial Tension of a Water/Model Oil System and their Application to Enhance Crude Oil Recovery. Colloids Surf. A Physicochem. Eng. Asp. 2017, 529, 621–627. DOI: 10.1016/j.colsurfa.2017.06.055.
  • Yazhgur, P. A.; Noskov, B. A.; Liggieri, L.; Lin, S. Y.; Loglio, G.; Miller, R.; Ravera, F. Dynamic Properties of Mixed Nanoparticle/Surfactant Adsorption Layers. Soft Matter 2013, 9, 3305–3314. DOI: 10.1039/c3sm27304k.
  • Saien, J.; Hashemi, S. Long Chain Imidazolium Ionic Liquid and Magnetite Nanoparticle Interactions at the Oil/Water Interface. J. Petrol. Sci. Eng. 2018, 160, 363–371. DOI: 10.1016/j.petrol.2017.10.057.
  • Jia, H.; Bai, X. T.; Zheng, L. Q. One-Step Synthesis and Assembly of Gold Nanochains Using the Langmuir Monolayer of Long-Chain Ionic Liquids and their Applications to SERS. Crystengcomm 2012, 14, 2920–2925. DOI: 10.1039/c2ce06375a.
  • Sahu, A.; Choudhury, S.; Bera, A.; Kar, S.; Kumar, S.; Mandal, A. Anionic–Nonionic Mixed Surfactant Systems: Micellar Interaction and Thermodynamic Behavior. J. Disper. Sci. Technol. 2015, 36, 1156–1169. DOI: 10.1080/01932691.2014.958852.
  • Mandal, A.; Kar, S. A Thermodynamic Assessment of Micellization for a Mixture of Sodium Dodecyl Benzene Sulfonate and Tween 80 Surfactants for Ultralow Interfacial Tension. Fluid Phase Equilibr 2016, 408, 212–222. DOI: 10.1016/j.fluid.2015.09.007.
  • Jia, H.; Lian, P.; Leng, X.; Han, Y.; Wang, Q.; Jia, K.; Niu, X.; Guo, M.; Yan, H.; Lv, K. Mechanism Studies on the Application of the Mixed Cationic/Anionic Surfactant Systems to Enhance Oil Recovery. Fuel 2019, 258, 116156. DOI: 10.1016/j.fuel.2019.116156.
  • You, Y.; Jiang, R.; Ling, T. T.; Zhao, J. X. Bending of the Flexible Spacer Chain of Gemini Surfactant Induced by Hydrophobic Interaction. Chin. J. Chem. 2009, 27, 469–471. DOI: 10.1002/cjoc.200990076.
  • Kan, X. N.; Liu, H.; Pan, Q. Y.; Li, Z. B.; Zhao, Y. J. Anion-Π Interactions: From Concept to Application. Chinese Chem. Lett 2018, 29, 261–266. DOI: 10.1016/j.cclet.2017.08.042.
  • Lv, K. H.; Huang, P.; Liang, Y. P.; Lian, P.; Yan, H.; Jia, H. The Great Improvement of the Surfactant Interfacial Activity via the Intermolecular Interaction with the Additional Appropriate Salt. Colloids Surf. A Physicochem. Eng. Asp 2018, 554, 142–148. DOI: 10.1016/j.colsurfa.2018.06.038.
  • Zhao, Z. K.; Bi, C. G.; Li, Z. S.; Qiao, W. H.; Cheng, L. B. Interfacial Tension between Crude Oil and Decylmethylnaphthalene Sulfonate Surfactant Alkali-Free Flooding Systems. Colloids Surf. A Physicochem. Eng. Asp 2006, 276, 186–191. DOI: 10.1016/j.colsurfa.2005.10.036.
  • Chu, Y. P.; Gong, Y.; Tan, X. L.; Zhang, L.; Zhao, S.; An, J. Y.; Yu, J. Y. Studies of Synergism for Lowering Dynamic Interfacial Tension in Sodium a-(N-Alkyl) Naphthalene Sulfonate/Alkali/Acidic Oil Systems. J. Colloid Interface Sci. 2004, 276, 182–187. DOI: 10.1016/j.jcis.2004.03.007.
  • Liu, Z. Y.; Zhang, L.; Cao, X. L.; Song, X. W.; Jin, Z. Q.; Zhang, L.; Zhao, S. Effect of Electrolytes on Interfacial Tensions of Alkyl Ether Carboxylate Solutions. Energy Fuels 2013, 27, 3122–3129. DOI: 10.1021/ef400458q.
  • Liu, Z. Y.; Li, Z. Q.; Song, X. W.; Zhang, J. C.; Zhang, L.; Zhang, L.; Zhao, S. Dynamic Interfacial Tensions of Binary Nonionic-Anionic and Nonionic Surfactant Mixtures at Water-Alkane Interfaces. Fuel 2014, 135, 91–98. DOI: 10.1016/j.fuel.2014.06.031.
  • Cao, J. H.; Zhou, Z. H.; Xu, Z. C.; Zhang, Q.; Li, S. H.; Cui, H. B.; Zhang, L.; Zhang, L. Synergism/Antagonism between Crude Oil Fractions and Novel Betaine Solutions in Reducing Interfacial Tension. Energy Fuel 2016, 30, 924–932.
  • Ye, Z. B.; Zhang, F. X.; Han, L. J.; Luo, P. Y.; Yang, J. J.; Chen, H. The Effect of Temperature on the Interfacial Tension between Crude Oil and Gemini Surfactant Solution. Colloids Surf. A Physicochem. Eng. Asp 2008, 322, 138–141. DOI: 10.1016/j.colsurfa.2008.02.043.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.