114
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Effect of composition of mono/di-hydroxy organic compounds and temperature on the aggregation behavior and physico-chemical properties of polyvinyl alcohol + TTAB mixture

, ORCID Icon, , , , ORCID Icon, & show all
Pages 686-697 | Received 27 May 2021, Accepted 21 Jul 2021, Published online: 14 Aug 2021

References

  • Bali, M.; Masalci, O. Interactions of Cationic Surfactants with Polyvinylpyrrolidone (PVP): Effects of Counter Ions and Temperature. J. Mol. Liq. 2020, 303, 112576. DOI: 10.1016/j.molliq.2020.112576.
  • Asadov, Z. H.; Huseynova, K. A.; Rahimov, R. A.; Ahmadova, G. A.; Zubkov, F. I. Alkyl Chain and Head-Group Effect of Mono- and Diisopropylolalkylamine-Polymethacrylic Acid Complexes in Aqueous Solution. J. Mol. Liq. 2017, 244, 533–539. https://doi.org/10.1016/j.molliq.2017.09.042. DOI: 10.1016/j.molliq.2017.09.042.
  • Bhardwaj, P.; Kamil, M.; Panda, M. Surfactant-Polymer Interaction: effect of Hydroxypropyl Methylcellulose on the Surface and Solution Properties of Gemini Surfactants. Colloid Polym. Sci. 2018, 296, 1879–1889. DOI: 10.1007/s00396-018-4409-5.
  • Sharma, T.; Kumar, G. S.; Chon, B. H.; Sangwai, J. S. Viscosity of the Oil-in-Water Pickering Emulsion Stabilized by Surfactant-Polymer and Nanoparticle-Surfactant-Polymer System. Korea-Aust. Rheol. J. 2014, 26, 377–387. DOI: 10.1007/s13367-014-0043-z.
  • Malcher, T.; Gzyl-Malcher, B. Influence of polymer-surfactant aggregates on fluid flow. Bioelectrochemistry 2012, 87, 42–49. DOI: 10.1016/j.bioelechem.2012.01.011.
  • Olajire, A. Review of ASP EOR (Alkaline Surfactant Polymer Enhanced Oil Recovery) Technology in the Petroleum Industry. Prospects Challenges Energy 2014, 77, 963–982. DOI: 10.1016/j.energy.2014.09.005.
  • Goddard, E. D. Polymer-Surfactant Interaction. Part 1: uncharged Water-Soluble Polymers and Charged Surfactants. Colloids Surf. A 1986, 19, 255–300. DOI: 10.1016/0166-6622(86)80340-7.
  • Hansson, P.; Lindman, B. Surfactant-Polymer Interactions. Curr. Opin. Colloid Interface Sci. 1996, 1, 604–613. DOI: 10.1016/S1359-0294(96)80098-7.
  • Tong, W.; Zheng, Q.; Shao, S.; Lei, Q.; Fang, W. Fang, W. critical Micellar Concentrations of Quaternary Ammonium Surfactants with Hydroxyethyl Substituents on Head Groups Determined by Isothermal Titration Calorimetry. J. Chem. Eng. Data 2010, 55, 3766–3771. DOI: 10.1021/je100288k.
  • Tajik, B.; Sohrabi, B.; Amani, R.; Hashemianzadeh, S. M. The Study of Polymer–Surfactant Interaction in Catanionic Surfactant Mixtures. Colloids Surf. A 2013, 436, 890–897. DOI: 10.1016/j.colsurfa.2013.07.026.
  • Rachmawati, H.; Rahma, A.; Shaal, L. A.; Müller, R. H.; Keck, C. M. Destabilization Mechanism of Ionic Surfactant on Curcumin Nanocrystal against Electrolytes. Sci. Pharm. 2016, 84, 685–693. DOI: 10.3390/scipharm84040685.
  • Martin, J.; Thiele, M. J.; Davari, M. D.; Hofmann, I.; König, M.; Lopez, C. G.; Vojcic, L.; Richtering, W.; Schwaneberg, U.; Tsarkova, L. A. Enzyme-Compatible Dynamic Nanoreactors from Electrostatically Bridged Like-Charged Surfactants and Polyelectrolytes. Angew. Chem. Int. Ed. Engl. 2018, 57, 9402–9407. DOI: 10.1002/anie.201805021.
  • Chiappisi, L.; Leach, S. D.; Gradzielski, M. Precipitating polyelectrolyte-surfactant systems by admixing a nonionic surfactant - a case of cononsurfactancy. Soft Matter. 2017, 13, 4988–4996. DOI: 10.1039/c7sm00747g.
  • Chari, K.; Lenhart, W. C. Effect of Polyvinylpyrrolidone on the Self-Assembly of Model Hydrocarbon Amphiphiles. J Colloid Interface Sci. 1990, 137, 204–216. DOI: 10.1016/0021-9797(90)90057-U.
  • Dias, R. S.; Magno, L. M.; Valente, A. J. M.; Das, D.; Das, P. K.; Maiti, S.; Miguel, M. G.; Lindman, B. Interaction between DNA and Cationic Surfactants: effect of DNA Conformation and Surfactant Headgroup. J. Phys. Chem. B. 2008, 112, 14446–14452. DOI: 10.1021/jp8027935.
  • Gelgec, U.; Iscan, M. Interactions of Polyglycol Ethers with Anionic Surfactants in Water. J. Disp. Sci. Technol. 2010, 31, 1667–1672. DOI: 10.1080/01932690903297124.
  • Cabane, B.; Duplessix, R. Organization of Surfactant Micelles Adsorbed on a Polymer Moleculein Water: A Neutron Scattering Study. J. Phys. France. 1982, 43, 1529–1542. DOI: 10.1051/jphys:0198200430100152900.
  • Hoque, M. A.; Mahbub, S.; Hossain, M. D.; Khan, M. A.; Khan, J. M.; Malik, A.; Ahmed, A.; Ahmed, M. Z. Influence of NaCl and Temperature on the Interaction between Cephradine Monohydrate and Surfactants: conductivity and UV–Visible Measurements. J. Mol. Liq. 2021, 328, 115418. .DOI: 10.1016/j.molliq.2021.115418.
  • Kumar, D.; Rub, M. A. Synthesis and Characterization of Dicationic Gemini Surfactant Micelles and Their Effect on the Rate of Ninhydrin–Copper-Peptide Complex Reaction. Tenside Surf. Deterg. 2018, 55, 78–84. DOI: 10.3139/113.110535.
  • Kumar, D.; Rub, M. A. Influence of Dimeric Gemini Surfactant Micelles on the Study of Nickel-Glycylleucine Dipeptide and Ninhydrin. J. Disp. Sci. Technol. 2020, 41, 1559–1567. DOI: 10.1080/01932691.2019.1627886.
  • Bhattarai, A. Micellization Behavior of Cetyltrimethylammonium Bromide in the Absence and Presence of Sodium Polystyrene Sulfonate in Water and Methanol-Water Mixture: A Conductivity Approach. J. Mol. Liq. 2019, 292, 111352. DOI: 10.1016/j.molliq.2019.111352.
  • Bhattarai, A. Studies of Aggregation Properties of Surfactant with and without Polyelectrolyte in Water and Binary Mixture of Methanol-Water from the Surface Tension Measurements. J. Mol. Liq. 2020, 312, 113438–113438. DOI: 10.1016/j.molliq.2020.113438.
  • Jönsson, B.; Lindman, B.; Holmberg, K.; Kronberg, B. Surfactant and Polymers in Aqueous Solution, Jhon Willey & Sons, Chichester, England. 1999.
  • Hammer, J.; Haftka, J. J.-H.; Scherpenisse, P.; Hermens, J. L. M.; de Voogt, P. Investigating Hydrophilic and Electrostatic Properties of Surfactants Using Retention on Two Mixed-Mode Liquid Chromatographic Columns. J. Chromatogr. A. 2018, 1571, 185–192. DOI: 10.1016/j.chroma.2018.08.024.
  • Aferni, A. E.; Guettari, M.; Tajouri, T. Effect of Polymer Conformation on Polymer-Surfactant Interaction in Salt-Free Water. Colloid Polym. Sci. 2016, 294, 1097–1106. DOI: 10.1007/s00396-016-3869-8.
  • Haftka, J. J. H.; Hammer, J.; Joop, L. M.; Hermens, J. L. M. Mechanisms of Neutral and Anionic Surfactant Sorption to Solid-Phase Microextraction Fibers. Environ. Sci. Technol. 2015, 49, 11053–11061. DOI: 10.1021/acs.est.5b02901.
  • Yan, H.; Yuan, S. L.; Xu, G. Y.; Liu, C. B. Effect of Ca2+ and Mg2+ Ions on Surfactant Solutions Investigated by Molecular Dynamics Simulation. Langmuir 2010, 26, 10448–10459. DOI: 10.1021/la100310w.
  • Negm, N. A.; Mohamed, A. S.; Ahmed, S. M.; El-Raouf, M. A. Polymer‐Cationic Surfactant Interaction: surface and Physicochemical Properties of Polyvinyl Alcohol (PVA)‐s‐Alkyl Isothiouronium Bromide Surfactant Mixed Systems. J. Surfact. Deterg. 2015, 18, 245–250. DOI: 10.1007/s11743-014-1665-3.
  • Ansari, A. A.; Kamil, M. Kabir-ud-Din. Polymer-Surfactant Interactions and the Effect of Tail Size Variation on Micellization Process of Cationic ATAB Surfactants in Aqueous Medium. J. Dispersion Sci. Technol. 2013, 34, 722–730. DOI: 10.1080/01932691.2012.685850.
  • Aktar, S.; Saha, M.; Mahbub, S.; Halim, M. A.; Rub, M. A.; Hoque, M. A.; Islam, D. M. S.; Kumar, D.; Alghamdi, Y. G.; Asiri, A. M. Influence of Polyethylene Glycol on the Aggregation/Clouding Phenomena of Cationic and Non-Ionic Surfactants in Attendance of Electrolytes (NaCl & Na2SO4): an Experimental and Theoretical Analysis. J. Mol. Liq. 2020, 306, 112880. DOI: 10.1016/j.molliq.2020.112880.
  • Hoque, M. A.; Mahbub, S.; Khan, M. A.; Eldesoky, G. E. Interaction of Sodium Alginate with Cetyltrimethylammonium Bromide in Aqua-Organic Mixed Solvents: influence of Temperatures and Compositions. J. Disper. Sci. Technol. 2020. DOI: 10.1080/01932691.2020.1847661.
  • Sultana, S.; Rahman, M. M.; Amin, R.; Rana, S.; Hoque, M. A.; Kumar, D.; Alfakeer, M. Effect of Temperature and Solvent Compositions on the Aggregation and Thermodynamic Properties of the Polyvinyl Alcohol + Tetradecyltrimethylammonium Bromide Mixture in Aqua-Organic Mixed Media. Mol. Phys. 2021, 119, e1892848. DOI: 10.1080/00268976.2021.1892848.
  • Ma, R.; Xiong, D.; Miao, F.; Zhang, J.; Peng, Y. Novel PVP/PVA Hydrogels for Articular Cartilage Replacement. Mater. Sci. Eng. C 2009, 29, 1979–1983. DOI: 10.1016/j.msec.2009.03.010.
  • Winterton, L. C.; Lally, J. M.; Sentell, K. B.; Chapoy, L. L. The Elution of Poly (Vinyl Alcohol) from a Contact Lens: The Realization of a Time Release Moisturizing Agent/Artificial Tear. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 80, 424–432. DOI: 10.1002/jbm.b.30613.
  • Huang, X.; Luckey, J. A.; Gordon, M. J.; Zare, R. N. Quantitative Determination of Low Molecular Weight Carboxylic Acids by Capillary Zone Electrophoresis/Conductivity Detection. Anal. Chem. 1989, 61, 766–770. DOI: 10.1021/ac00182a025.
  • Schreier, S.; Malheiro, S. V.; Paula, E. d. Surface Active Drugs: self-Association and Interaction with Membranes and Surfactants. Physicochemical and Biological Aspects. Biochim. Biophys. Acta (BBA) Biomembranes 2000, 1508, 210–234. DOI: 10.1016/S0304-4157(00)00012-5.
  • Ahsan, Sk, M. A.; Hossain, M. D.; Hoque, M. A.; Khan, M. A. Interaction of Moxifloxacin Hydrochloride with Cetyldimethylethylammonium Bromide. J. Bang. Chem. Soc. 2015, 27, 47–57.
  • Kumar, D.; Rub, M. A. Effect of Anionic Surfactant and Temperature on Micellization Behavior of Promethazine Hydrochloride Drug in Absence and Presence of Urea. J. Mol. Liquids 2017, 238, 389–396. DOI: 10.1016/j.molliq.2017.05.027.
  • Kumar, D.; Azum, N.; Rub, M. A.; Asiri, A. M. Aggregation Behavior of Sodium Salt of Ibuprofen with Conventional and Gemini Surfactant. J. Mol. Liq. 2018, 262, 86–96. DOI: 10.1016/j.molliq.2018.04.053.
  • Rahman, M.; Hoque, M. A.; Rub, M. A.; Khan, M. A. Interaction of Cetyltrimethylammonium Bromide with Ceftriaxone Sodium Trihydrate Drug at Different Tempertures and Compositions: effect of Different Electrolytes. Chinese J. Chem. Eng. 2019, 27, 1895–1903. DOI: 10.1016/j.cjche.2018.10.022.
  • Rahman, M.; Khan, M. A.; Rub, M. A.; Hoque, M. A. Effect of Temperature and Salts on the Interaction of Cetyltrimethylammonium Bromide with Ceftriaxone Sodium Trihydrate Drug. J. Mol. Liq. 2016, 223, 716–724. DOI: 10.1016/j.molliq.2016.08.049.
  • Molla, M. R.; Rub, M. A.; Ahmed, A.; Hoque, M. A. Interaction between Tetradecyltrimethylammoniumbromide and Benzyldimethylhexadecylammonium Chloride in Aqueous/Urea Solution at Various Temperatures: An Experimental and Theoretical Investigation. J. Mol. Liq. 2017, 238, 62–70. DOI: 10.1016/j.molliq.2017.04.061.
  • Kumar, D.; Hidayathulla, S.; Rub, M. A. Association Behavior of a Mixed System of the Antidepressant Drug Imipramine Hydrochloride and Dioctyl Sulfosuccinate Sodium Salt: effect of Temperature and Salt. J. Mol. Liq. 2018, 271, 254–264. DOI: 10.1016/j.molliq.2018.08.147.
  • Azum, N.; Ahmed, A.; Rub, M. A.; Asiri, A. M.; Alamery, S. F. Investigation of Aggregation Behavior of Ibuprofen Sodium Drug under the Influence of Gelatin Protein and Salt. J. Mol. Liq. 2019, 290, 111187. DOI: 10.1016/j.molliq.2019.111187.
  • Khan, F.; Rub, M. A.; Azum, N.; Asiri, A. M. Mixtures of Antidepressant Amphiphilic Drug Imipramine Hydrochloride and Anionic Surfactant: Micellar and Thermodynamic Investigation. J. Phys. Org. Chem. 2018, 31, e3812. DOI: 10.1002/poc.3812.
  • Bielawska, M.; Chodzińska, A.; Jańczuk, B.; Zdziennicka, A. Determination of CTAB CMC in Mixed Water + Short-Chain Alcohol Solvent by Surface Tension, Conductivity, Density and Viscosity Measurements. Colloids Surf. A 2013, 424, 81–88. DOI: 10.1016/j.colsurfa.2013.02.017.
  • Naqvi, A. Z.; Fatma, N. Kabir-ud-Din. Physicochemical Investigations of Mixed Micelles of Cationic Gemini Surfactants with Different Triblock Polymers. Colloid Polym. Sci. 2017, 295, 2323–2335. DOI: 10.1007/s00396-017-4195-5.
  • Li, Y.; Bao, M.; Wang, Z.; Zhang, H.; Xu, G. Aggregation Behavior and Complex Structure between Triblock Copolymer and Anionic Surfactants. J. Mol. Struc. 2011, 985, 391–396. DOI: 10.1016/j.molstruc.2010.11.028.
  • Dai, S.; Tam, K. C. Isothermal Titration Calorimetry Studies of Binding Interactions between Polyethylene Glycol and Ionic Surfactants. J. Phys. Chem. B. 2001, 105, 10759–10763. DOI: 10.1021/jp0110354.
  • Seng, W. P.; Tam, K. C.; Jenkins, R. D.; Bassett, D. R. Model Alkali-Soluble Associative (HASE) Polymers and Ionic Surfactant Interactions Examined by Isothermal Titration Calorimetry. Langmuir 2000, 16, 2151–2156. DOI: 10.1021/la9909704.
  • Safarpour, M. A.; Rafati, A. A.; Gharibi, H.; Sameti, M. R. Influence of Short-Chain Alcohols on the Micellization Parameters of Sodium Dodecyl Sulfate (SDS). J. Chin. Chem. Soc. 1999, 46, 983–991. DOI: 10.1002/jccs.199900136.
  • Shirzad, S.; Sadeghi, R. Micellization Properties and Related Thermodynamic Parameters of Aqueous Sodium Dodecyl Sulfate and Sodium Dodecyl Sulfonate Solutions in the Presence of 1-Propanol. Fluid Phase Equil. 2014, 377, 1–8. DOI: 10.1016/j.fluid.2014.06.009.
  • Ruiz, C. C. Thermodynamics of Micellization of Tetradecyltrimethylammonium Bromide in Ethylene Glycol-Water Binary Mixtures. Colloid Polym. Sci. 1999, 277, 701–707. DOI: 10.1007/s003960050443.
  • Akbaş, H.; Kartal, Ç. Conductometric Studies of Hexadecyltrimethylammonium Bromide in Aqueous Solutions of Ethanol and Ethylene Glycol. Colloid J. 2006, 68, 125–130. DOI: 10.1134/S1061933X06020013.
  • Naorem, H.; Devi, S. D. Conductometric and Surface Tension Studies on the Micellization of Some Cationic Surfactants in Water-Organic Solvent Mixed Media. J. Surf. Sci. Technol. 2006, 22, 89–100. DOI: 10.18311/jsst/2006/1960.
  • Golmohammadi, F.; Amiri, M.; Gharibi, H.; Yousef, A.; Safari, M. co-Solvent Effect on Spontaneous Formation of Large Nanoscale Structures in Catanionic Mixtures in the Anionic-Rich Region. J. Solution Chem. 2020, 49, 16–33. DOI: 10.1007/s10953-019-00935-6.
  • Lee, D. J.; Huang, W. H. Enthalpy-Entropy Compensation in Micellization of Sodium Dodecyl Sulphate in Water/Methanol, Water/Ethylene Glycol and Water/Glycerol Binary Mixtures. Colloid Polym. Sci. 1996, 274, 160–165. DOI: 10.1007/BF00663448.
  • Callaghan, A.; Doyle, R.; Alexander, E.; Palepu, R. Thermodynamic Properties of Micellization and Adsorption and Electrochemical Studies of Hexadecylpyridinium Bromide in Binary Mixtures of 1,2-Ethanediol with Water. Langmuir 1993, 9, 3422–3426. DOI: 10.1021/la00036a016.
  • Banipal, T. S.; Kaur, H.; Banipal, K.; Sood, A. K. Effect of Head Groups, Temperature, and Polymer Concentration on Surfactant—Polymer Interactions. J. Surfact. Deterg. 2014, 17, 1181–1191. DOI: 10.1007/s11743-014-1633-y.
  • Rub, M. A.; Azum, N. Association Behavior of the Amphiphilic Drug and Sodium p-Toluenesulfonate Mixtures: Effect of Additives. J. Mol. Liquids 2021, 325, 114654. DOI: 10.1016/j.molliq.2020.114654.
  • Molla, M. R.; Rana, S.; Rub, M. A.; Ahmed, A.; Hoque, M. A. Conductometric Probe Analysis of the Effect of Benzyldimethylhexadecylammonium Chloride on the Micellization Behavior of Dodecyltrimethylammonium Bromide in Aqueous/Urea Solution: Investigation of Concentration and Temperature Effect. J. Surfactants Deterg. 2018, 21, 231–246. DOI: 10.1002/jsde.12011.
  • Hoque, M. A.; Rahman, M. M.; Alam, M. M.; Mahbub, S.; Khan, M. A.; Kumar, D.; Albaqami, M. D.; Wabaidur, S. M. Interaction of Cephalexin Monohydrate with Surfactants in Aqueous and Sodium Chloride Solution at Variable Temperatures: Conductivity and Spectroscopic Measurements. J. Mol. Liq. 2021, 326, 115337. DOI: 10.1016/j.molliq.2021.115337.
  • Rosen, M. J. Surfactants and Interfacial Phenomena, 3rd ed.; John Wiley & Sons: New York, 2004.
  • Akhtar, F.; Hoque, M. A.; Khan, M. A. Interaction of Cefadroxyl Monohydrate with Hexadecyltrimethyl Ammonium Bromide and Sodium Dodecyl Sulfate. J. Chem. Thermodyn 2008, 40, 1082–1086. DOI: 10.1016/j.jct.2008.03.001.
  • Mahbub, S.; Rub, M. A.; Hoque, M. A.; Khan, M. A. Mixed Micellization Study of Dodecyltrimethylammonium Chloride and Cetyltrimethylammonium Bromide Mixture in Aqueous/Urea Medium at Different Temperatures: Theoretical and Experimental View. J. Phys. Org. Chem. 2018, 31, e3872. DOI: 10.1002/poc.3872.
  • Mahbub, S.; Rub, M. A.; Hoque, M. A.; Khan, M. A. Influence of NaCl/Urea on the Aggregation Behavior of Dodecyltrimethylammonium Chloride and Sodium Dodecyl Sulfate at Varying Temperatures and Compositions: Experimental and Theoretical Approach. J. Phys. Org. Chem. 2019, 32, e3917. DOI: 10.1002/poc.3917.
  • Mata, J.; Varade, D.; Bahadur, P. Aggregation Behavior of Quaternary Salt Based Cationic Surfactants. Thermochim. Acta 2005, 428, 147–155. DOI: 10.1016/j.tca.2004.11.009.
  • Nusselder, J. J. H.; Engberts, J. B. Toward a Better Understanding of the Driving Force for Micelle Formation and Micellar Growth. J. Colloid Interface Sci. 1992, 148, 353–361. DOI: 10.1016/0021-9797(92)90174-K.
  • Neubauer, G.; Hoffmann, H.; Kalus, J.; Schwandner, B. The Shape of Hexadecyloctyldimethylammoniumrromide Micelles in Aqueous Solutions. Chem. Phys. 1986, 110, 247–253. DOI: 10.1016/0301-0104(86)87081-1.
  • Hoque, M. A.; Alam, M. M.; Rana, S.; Alothman, A. A.; Alsawat, M. Aggregation Behavior and Thermodynamic Properties of the Mixture of Sodium Carboxymethyl Cellulose and Cetyltrimethylammonium Bromide in Numerous Temperatures and Mixed Solvents. Z. Phys. Chem. 2021. DOI: 10.1515/zpch-2021-3030.
  • Chen, L. J.; Lin, S. Y.; Huang, C. C. Effect of Hydrophobic Chain Length of Surfactants on Enthalpy-Entropy Compensation of Micellization. J. Phys. Chem. B. 1998, 102, 4350–4356. DOI: 10.1021/jp9804345.
  • Stainsby, G.; Alexander, A. E. Studies of Soap Solutions. Part II. Factors Influencing Aggregation in Soap Solutions. Trans. Faraday Soc 1950, 46, 587–597. DOI: 10.1039/TF9504600587.
  • Hamdiyyah, M. A. The Effect of Urea on the Structure of Water and Hydrophobic Bonding. J. Phys. Chem. 1965, 69, 2720–2725. DOI: 10.1021/j100892a039.
  • Bahal, C. K.; Kostenbauder, H. B. Interaction of Preservatives with Macromolecules V Binding of Chlorobutanol, Benzyl Alcohol, and Phenylethyl Alcohol by Nonionic Agents. J. Pharm. Sci. 1964, 53, 1027–1029. DOI: 10.1002/jps.2600530908.
  • Banipal, T. S.; Kaur, H.; Banipal, P. K. Studies on the Binding Ability of Diclofenac Sodium to Cationic Surfactants Micelles in Aqueous Ethanol Solutions. J. Therm. Anal. Calorim. 2017, 128, 501–511. DOI: 10.1007/s10973-016-5889-5.
  • Kumar, H.; Katal, A.; Rawat, N. K. Modulations in Self-Organization Properties of Surfactant in Aqueous Ionic Liquid Media. Z. Phys. Chem. 2020, 234, 1603–1621. DOI: 10.1515/zpch-2019-1566.
  • Vamvaca, K.; Jelesarov, I.; Hilvert, D. Kinetics and Thermodynamics of Ligand Binding to a Molten Globular Enzyme and Its Native Counterpart. J. Mol. Biol. 2008, 382, 971–977. DOI: 10.1016/j.jmb.2008.07.049.
  • Dey, A.; Patra, N.; Mal, A.; Ghosh, S. Impact of Organic Polar Solvents (DMSO and DMF) on the Micellization and Related Behavior of an Anionic (AOT), Cationic (CEM2AB) and Cationic Gemini Surfactant (16-5-16). J. Mol. Liq. 2017, 244, 85–96. DOI: 10.1016/j.molliq.2017.08.094.
  • Das, S.; Naskar, B.; Ghosh, S. Influence of Temperature and Organic Solvents (Isopropanol and 1,4-Dioxane) on the Micellization of Cationic Gemini Surfactant (14-4-14). Soft Matter. 2014, 10, 2863–2875. DOI: 10.1039/c3sm52938j.
  • Khan, M. B.; Hoque, M. A.; Islam, D. M. S. Physicochemical Investigation of the Clouding Behavior and Thermodynamics of p-Tert-Alkylphenoxy Poly (Oxyethylene) Ether Micelles in Aqueous Environment and in the Presence of Diols. J. Chem. Thermodyn. 2015, 89, 177–182. DOI: 10.1016/j.jct.2015.05.008.
  • Rakshit, A. K.; Sharma, B. The Effect of Amino Acids on the Surface and Thermodynamic Properties of Poly[Oxyethylene(10)] Lauryl Ether in Aqueous Solution. Colloid Polym. Sci. 2003, 281, 45–51. DOI: 10.1007/s00396-002-0743-7.
  • Mahbub, S.; Akter, S.; Luthfunnessa; Akter, P.; Hoque, M. A.; Rub, M. A.; Kumar, D.; Alghamdi, Y. G.; Asiri, A.M.; Džudžević-Čančar, H. Effect of Temperature and Polyols on the Ciprofloxacin Hydrochloride-Mediated Micellization of Sodium Dodecyl Sulfate. RSC Adv. 2020, 10, 14531–14541. DOI: 10.1039/D0RA00213E.
  • Lumry, R.; Rajender, S. Enthalpy-Entropy Compensation Phenomena in Water Solutions of Proteins and Small Molecules: A Ubiquitous Property of Water. Biopolymers 1970, 9, 1125–1227. DOI: 10.1002/bip.1970.360091002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.