384
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Investigation on the formation and stability of microemulsions with Gemini surfactants: DPD simulation

, , , , , & show all
Pages 698-707 | Received 07 Apr 2021, Accepted 21 Jul 2021, Published online: 19 Aug 2021

References

  • Chen, J.; Ma, X. h.; Yao, G. l.; Zhang, W. t.; Zhao, Y. Microemulsion-Based Anthocyanin Systems: effect of Surfactants, Cosurfactants, and Its Stability. Int. J. Food Prop. 2018, 21, 1152–1165. DOI: 10.1080/10942912.2018.1485032.
  • Subongkot, T.; Ngawhirunpat, T. Development of a Novel Microemulsion for Oral Absorption Enhancement of All-Trans Retinoic Acid. IJN 2017, 12, 5585–5599. DOI: 10.2147/IJN.S142503.
  • Hu, C.; Wang, Q.; Ma, C.; Xia, Q. Non-Aqueous Self-Double-Emulsifying Drug Delivery System: A New Approach to Enhance Resveratrol Solubility for Effective Transdermal Delivery. Colloid Surface A 2016, 489, 360–369. DOI: 10.1016/j.colsurfa.2015.11.017.
  • Tamilvanan, S. Oil-in-Water Lipid Emulsions: implications for Parenteral and Ocular Delivering Systems. Prog. Lipid Res. 2004, 43, 489–533. DOI: 10.1016/j.plipres.2004.09.001.
  • Gundogdu, E.; Alvarez, I. G.; Karasulu, E. Improvement of Effect of Water-in-Oil Microemulsion as an Oral Delivery System for Fexofenadine: In Vitro and in Vivo Studies. Int. J. Nanomedicine. 2011, 6, 1631–1640. DOI: 10.2147/IJN.S22673.
  • Jaimes-Lizcano, Y. A.; Wang, Q.; Rojas, E. C.; Papadopoulos, K. D. Evaporative Destabilization of Double Emulsions for Effective Triggering of Release. Colloid Surface A 2013, 423, 81–88. DOI: 10.1016/j.colsurfa.2013.01.054.
  • Ramli, S.; Chyi, K. T.; Zainuddin, N.; Mokhtar, W. N. A. W.; M.; Abdul. Rahman, I. The Influence of Surfactant/Co-Surfactant Hydrophilic-Lipophilic Balance on the Formation of Limonene-Based Microemulsion as Vitamin C Carrier. Sains Malaysiana 2019, 48, 1035–1042. DOI: 10.17576/jsm-2019-4805-12.
  • Sane, R.; Mittapalli, R. K.; Elmquist, W. F. Development and Evaluation of a Novel Microemulsion Formulation of Elacridar to Improve Its Bioavailability. J. Pharm. Sci. 2013, 102, 1343–1354. DOI: 1002/jps.23450. DOI: 10.1002/jps.23450.
  • Subongkot, T.; Sirirak, T. Development and Skin Penetration Pathway Evaluation of Microemulsions for Enhancing the Dermal Delivery of Celecoxib. Colloids Surf B Biointerfaces 2020, 193, 111103. DOI: 10.1016/j.colsurfb.2020.111103.
  • Tehrani-Bagha, A. R. Cationic Gemini Surfactant with Cleavable Spacer: Emulsion Stability. Colloid Surface A 2016, 508, 79–84. DOI: 10.1016/j.colsurfa.2016.08.020.
  • Menger, F. M.; Littau, C. A. Gemini Surfactants: Synthesis and Properties. J. Am. Chem. Soc. 1991, 113, 1451–1452. DOI: 10.1021/ja00004a077.
  • Menger, F. M.; Littau, C. A. Gemini Surfactants: A New Class of Self-Assembling Molecules. J. Am. Chem. Soc. 1993, 115, 10083–10090. DOI: 10.1021/ja00075a025.
  • Sugai, J.; Saito, N.; Takahashi, Y.; Kondo, Y. Synthesis and Viscoelastic Properties of Gemini Surfactants Containing Redox-Active Ferrocenyl Groups. Colloid Surface A 2019, 572, 197–202. DOI: 10.1016/j.colsurfa.2019.04.010.
  • Hou, B.; Jia, R.; Fu, M.; Wang, Y.; Ma, C.; Jiang, C.; Yang, B. A Novel High Temperature Tolerant and High Salinity Resistant Gemini Surfactant for Enhanced Oil Recovery. J. Mol. Liq. 2019, 296, 112114–112114. DOI: 10.1016/j.molliq.2019.112114.
  • Zhou, M.; Xia, L.; He, Y.; Zhang, L.; Qiao, X.; Zhong, X. Synthesis of New Salt‐Resistant Sulfonate Gemini Surfactants with Hydroxyl Groups. J. Surfact. Deterg. 2015, 18, 303–308. DOI: 10.1007/s11743-014-1667-1.
  • Zhou, M.; Li, S.; Zhang, Z.; Luo, G.; Zhao, J. Synthesis of Oligomer Betaine Surfactant (DDTPA) and Rheological Properties of Wormlike Micellar Solution System. J. Taiwan Inst. Chem. Eng. 2016, 66, 1–11. DOI: 10.1016/j.jtice.2016.05.013.
  • Zhou, M.; Zhang, Z.; Xu, D.; Hou, L.; Zhao, W.; Nie, X.; Zhou, L.; Zhao, J. Synthesis of Three Gemini Betaine Surfactants and Their Surface Active Properties. J. Taiwan Inst. Chem. Eng. 2017, 74, 7–13. DOI: 10.1016/j.jtice.2016.10.012.
  • Cheng, Y. Q.; Yang, Y.; Niu, C. R. Progress in the Synthesis of Zwitterionic Gemini Surfactants. J. Surfact. Deterg. 2019, 20, 1243–1254. DOI: 10.1007/s11743-017-2014-0.
  • Zhou, M.; Chen, Y.; Zou, J.; Bu, J. Recent Advances in the Synthesis of Sulfonate Gemini Surfactants. J. Surfactants Deterg. 2018, 21, 443–453. DOI: 10.1002/jsde.12046.
  • Zhou, M.; Bu, J.; Ma, Y.; Zou, J.; Fu, H.; Yang, F. Synthesis of New Sulfobetaine Gemini Surfactants with Hydroxyls and Their Effects on Surface-Active Properties. J. Surfactants Deterg. 2018, 21, 867–877. DOI: 10.1002/jsde.12201.
  • Zhou, M.; Zhou, L.; Guo, X. Synthesis of Sulfobetaine-Type Zwitterionic Gemini Surfactants (EAPMAC) and Their Oilfield Application Properties. J. Surfactants Deterg. 2019, 22, 23–32. DOI: 10.1002/jsde.12199.
  • Ronald, N.; Kyuro, S.; Yuichi, S.; Hikmat, S. A. S.; Ryo, U. Mobilization and Displacement of Heavy Oil by Cationic Microemulsions in Different Sandstone Formations. J. Pet. Sci. Eng. 2017, 157, 1115–1129. DOI: 10.1016/j.petrol.2017.07.032.
  • Santanna, V. C.; Curbelo, F. D. S.; Castro Dantas, T. N.; Dantas Neto, A. A.; Albuquerque, H. S.; Garnica, A. I. C. Microemulsion Flooding for Enhanced Oil Recovery. J. Pet. Sci. Eng. 2009, 66, 117–120. [Database] DOI: 10.1016/j.petrol.2009.01.009.
  • Ronald, N.; Kyuro, S.; Yuichi, S.; Brian, O.; Hikmat, S. A. S.; Ryo, U. Interactions between Formation Rock and Petroleum Fluids during Microemulsion Flooding and Alteration of Heavy Oil Recovery Performance. Energy Fuels 2017, 31, 255–270. DOI: 10.1021/acs.energyfuels.6b02216.
  • Zhou, M.; Bu, J.; Wang, J.; Guo, X.; Huang, J.; Huang, M. Study on Three Phase Foam for Enhanced Oil Recovery in Extra-Low Permeability Reservoirs. Oil Gas Sci. Technol. – Rev. IFP Energies Nouvelles 2018, 73, 55. DOI: 10.2516/ogst/2018059.
  • Bhut, P. R.; Pal, N.; Mandal, A. Characterization of Hydrophobically Modified Polyacrylamide in Mixed Polymer-Gemini Surfactant Systems for Enhanced Oil Recovery Application. ACS Omega 2019, 4, 20164–20177. DOI: 10.1021/acsomega.9b02279.
  • Khan, A. A. P.; Khan, A.; Rahman, M. M.; Asiri, A. M.; Oves, M. Chemical Sensor Development and Antibacterial Activities Based on Polyaniline/Gemini Surfactants for Environmental Safety. J. Polym. Environ. 2018, 26, 1673–1684. DOI: 10.1007/s10924-017-1055-9.
  • Zhao, Y.; Zhao, Z.; Zhang, J.; Wei, M.; Jiang, X.; Hou, L. Gemini Surfactant Mediated HIPE Template for the Preparation of Highly Porous Monolithic Chitosan-g-Polyacrylamide with Promising Adsorption Performances. Eur. Polym. J. 2019, 112, 809–816. DOI: 10.1016/j.eurpolymj.2018.11.002.
  • Pal, N.; Kumar, N.; Saw, R. K.; Mandal, A. Gemini Surfactant/Polymer/Silica Stabilized Oil-in-Water Nanoemulsions: Design and Physicochemical Characterization for Enhanced Oil Recovery. J. Petrol. Sci. Eng. 2019, 183, 106464. DOI: 10.1016/j.petrol.2019.106464.
  • Hassan, A.; Mahmoud, M.; Kamal, M. S.; Hussain, S. M. S.; Patil, S. Novel Treatment for Mitigating Condensate Bank Using a Newly Synthesized Gemini Surfactant. Molecules 2020, 25, 3030–3043. DOI: 10.3390/molecules25133030.
  • He, Y.; Jiang, G.; Deng, Z.; Liu, F.; Peng, S.; Ni, X.; Shi, Y.; Cui, W. Gemini Surfactant as a Mechano-Responsive Rheology Modifier for Inverted Emulsion Drilling Fluid. RSC Adv. 2018, 8, 342–353. DOI: 10.1039/C7RA11300E.
  • Wang, H.; Chan, E.; Bregu, S.; Rempel, G. L. Preparation of Poly(Styrene-co-Butadiene) Fine Latex via a Gemini Surfactant-Induced Low-Temperature Initiation Semibatch Emulsion Polymerization System. J. Polym. Sci. Part A: Polym. Chem. 2016, 54, 1669–1678. DOI: 10.1002/pola.28057.
  • Ma, T.; Feng, H.; Wu, H.; Li, Z.; Jiang, J.; Xu, D.; Meng, Z.; Kang, W. Property Evaluation of Synthesized Anionic-Nonionic Gemini Surfactants for Chemical Enhanced Oil Recovery. Colloid Surfaces A 2019, 581, 123800. DOI: 10.1016/j.colsurfa.2019.123800.
  • Hussein Ali, T.; Syahila Duali Hussen, R.; Heidelberg, T.; Anua Bin Tajuddin, H. X-Shaped Sugar-Derived Emulsifiers from ‘Click Chemistry’-A New Gemini Surfactant Type for Oil-in-Water Systems. ChemistrySelect 2020, 5, 6856–6860. DOI: 10.1002/slct.202000929.
  • Kumar, H.; Kumar, V. Preparation of Water-in-Diesel Oil Nano-Emulsion Using Nonionic Surfactants with Enhanced Stability and Flow Properties. J. Disper Sci. Technol. 2018, 39, 560–570. DOI: 10.1080/01932691.2017.1336451.
  • Tawfeek, A. M.; Dyab, A. K. F.; Al-Lohedan, H. A. Synergetic Effect of Reactive Surfactants and Clay Particles on Stabilization of Nonaqueous Oil-in-Oil (o/o) Emulsions. J. Disper. Sci. Technol. 2014, 35, 265–272. DOI: 10.1080/01932691.2013.769110.
  • Wen, Y.; Cheng, H.; Lu, L. J.; Liu, J.; Feng, Y.; Guan, W.; Zhou, Q.; Huang, X. F. Analysis of Biological Demulsification Process of water-in-oil emulsion by Alcaligenes sp. S-XJ-1 . Bioresour. Technol. 2010, 101, 8315–8322. DOI: 10.1016/j.biortech.2010.05.088.
  • Kang, W.; Guo, L.; Fan, H.; Meng, L.; Li, Y. Flocculation, Coalescence and Migration of Dispersed Phase Droplets and Oil-Water Separation in Heavy Oil Emulsion. J. Petrol. Sci. Eng. 2012, 81, 177–181. DOI: 10.1016/j.petrol.2011.12.011.
  • Trujillo-Cayado, L. A.; Santos, J.; Alfaro, M. C.; Calero, N.; Muñoz, J. A Further Step in the Development of Oil-in-Water Emulsions Formulated with a Mixture of Green Solvents. Ind. Eng. Chem. Res. 2016, 55, 7259–7266. DOI: 10.1021/acs.iecr.6b01320.
  • Ji, J.; Zhang, J.; Chen, J.; Wang, Y.; Dong, N.; Hu, C.; Chen, H.; Li, G.; Pan, X.; Wu, C. Preparation and Stabilization of Emulsions Stabilized by Mixed Sodium Caseinate and Soy Protein Isolate. Food Hydrocolloids 2015, 51, 156–165. DOI: 10.1016/j.foodhyd.2015.05.013.
  • Kang, W.; Xu, B.; Wang, Y.; Li, Y.; Shan, X.; An, F.; Liu, J. Stability Mechanism of W/O Crude Oil Emulsion Stabilized by Polymer and Surfactant. Colloid Surface A 2011, 384, 555–560. DOI: 10.1016/j.colsurfa.2011.05.017.
  • Liu, J.; Huang, X. F.; Lu, L. J.; Li, M. X.; Xu, J. C.; Deng, H. P. Turbiscan Lab ® Expert analysis of the biological demulsification of a water-in-oil emulsion by two biodemulsifiers . J. Hazard. Mater. 2011, 190, 214–221. DOI: 10.1016/j.jhazmat.2011.03.028.
  • Ji, Y.; Kang, W.; Meng, L.; Hu, L.; Yang, H. Study of the Solution Behavior of β-Cyclodextrin Amphiphilic Polymer Inclusion Complex and the Stability of Its O/W Emulsion. Colloid Surface A 2014, 453, 117–124. DOI: 10.1016/j.colsurfa.2014.04.016.
  • Huck-Iriart, C.; Pizones Ruiz-Henestrosa, V. M.; Candal, R. J.; Herrera, M. L. Effect of Aqueous Phase Composition on Stability of Sodium Caseinate/Sunflower Oil Emulsions. Food Bioprocess Technol. 2013, 6, 2406–2418. DOI: 10.1007/s11947-012-0901-y.
  • Zhang, J.; Chen, L.; Wang, A.; Yan, Z. Dissipative Particle Dynamics Simulation of Ionic Liquid-Based Microemulsion: Quantitative Properties and Emulsification Mechanism. Ind. Eng. Chem. Res. 2020, 59, 763–773. DOI: 10.1021/acs.iecr.9b05660.
  • Zhang, H.; Li, D.; Pei, L.; Zhang, L.; Wang, F. The Stability of the Micelle Formed by Chain Branch Surfactants and Polymer under Salt and Shear Force: Insight from Dissipative Particle Dynamics Simulation. J. Disper Sci. Technol. 2016, 37, 270–279. DOI: 10.1080/01932691.2015.1042584.
  • Zhang, H.; Xu, B.; Zhang, H. Mesoscopic Simulation on the Microemulsion System Stabilized by Bola Surfactant. J. Disper Sci. Technol. 2021, 1–10. DOI: 10.1080/01932691.2020.1869033.
  • Rekvig, L.; Kranenburg, M.; Vreede, J.; Hafskjold, B.; Smit, B. Investigation of Surfactant Efficiency Using Dissipative Particle Dynamics. Langmuir 2003, 19, 8195–8205. DOI: 10.1021/la0346346.
  • Wang, S.; Yang, S.; Wang, R.; Tian, R.; Zhang, X.; Sun, Q.; Liu, L. Dissipative Particle Dynamics Study on the Temperature Dependent Interfacial Tension in Surfactant-Oil-Water Mixtures. J. Petrol. Sci. Eng. 2018, 169, 81–95. DOI: 10.1016/j.petrol.2018.05.036.
  • Groot, R. D.; Madden, T. J. Dynamic Simulation of Diblock Copolymer Microphase Separation. J. Chem. Phys. 1998, 108, 8713–8724. [Database] DOI: 10.1063/1.476300.
  • Xu, Y.; Yu, X.; Yan, H.; Wang, Y.; Feng, J. Self-Assembly Behaviors of Heterogemini Surfactant in Aqueous Solution Investigated by Dissipative Particle Dynamics. J. Disper. Sci. Technol. 2014, 35, 1300–1307. DOI: 10.1080/01932691.2013.850433.
  • Rao, Z.; Wang, S.; Peng, F.; Zhang, W.; Zhang, Y. Dissipative Particle Dynamics Investigation of Microencapsulated Thermal Energy Storage Phase Change Materials. Energy 2012, 44, 805–812. DOI: 10.1016/j.energy.2012.05.012.
  • Hong, Z.; Xiao, N.; Li, L.; Xie, X. Investigation of Nanoemulsion Interfacial Properties: A Mesoscopic Simulation. J. Food Eng. 2020, 276, 109877–109812. DOI: 10.1016/j.jfoodeng.2019.109877.
  • Groot, R. D.; Warren, P. B. Dissipative Particle Dynamics: Bridging the Gap between Atomistic and Mesoscopic Simulation. J. Chem. Phys. 1997, 107, 4423–4435. DOI: 10.1063/1.474784.
  • Hasinovic, H.; Friberg, S. E.; Guo, R. A One-Step Process to a Janus Emulsion. J Colloid Interface Sci 2011, 354, 424–426. DOI: 10.1016/j.jcis.2010.10.004.
  • Ding, C. G.; Ge, L. L.; Jin, H. M.; Bian, Q. F.; Guo, R. Janus Emulsions Formed with Organic Solvents as Inner Phases. Colloids Surfaces A. 2019, 583, 123947–123948. DOI: 10.1016/j.colsurfa.2019.123947.
  • Wang, X. Y.; Santo, K. P.; Neimark, A. V. Modeling Gas-Liquid Interfaces by Dissipative Particle Dynamics: Adsorption and Surface Tension of Cetyl Trimethyl Ammonium Bromide at the Air-Water Interface . Langmuir 2020, 36, 14686–14698. DOI: 10.1021/acs.langmuir.0c02572.
  • Ge, L. L.; Jin, H. M.; Li, X.; Wei, D.; Guo, R. Batch-Scale Preparation of Reverse Janus Emulsions. Langmuir 2019, 35, 3490–3497. DOI: 10.1021/acs.langmuir.9b00061.
  • Jin, H. M.; Ge, L. L.; Li, X.; Guo, R. Destabilization Mechanism of (W1 + W2)/O Reverse Janus Emulsions. J. Colloid Interface Sci. 2021, 585, 205–216. DOI: 10.1016/j.jcis.2020.11.062.
  • Chen, Z.; Cheng, X.; Cui, H.; Cheng, P.; Wang, H. Dissipative Particle Dynamics Simulation of the Phase Behavior and Microstructure of CTAB/Octane/1-Butanol/Water Microemulsion. Colloid Surface A. 2007, 301, 437–443. DOI: 10.1016/j.colsurfa.2007.01.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.