217
Views
5
CrossRef citations to date
0
Altmetric
Articles

Upgrade of low rank coal by using emulsified asphalt and its application for preparation of coal water slurry with high concentration

, , , , , , & show all
Pages 901-910 | Received 01 Feb 2021, Accepted 07 Sep 2021, Published online: 23 Sep 2021

References

  • Zhu, J.-F.; Zhang, G.-H.; Liu, G.-J.; Qu, Q.-Q.; Li, Y.-B. Investigation on the Rheological and Stability Characteristics of Coal-Water Slurry with Long Side-Chain Polycarboxylate Dispersant. Fuel Process. Technol. 2014, 118, 187–191. DOI: 10.1016/j.fuproc.2013.09.003.
  • Tahmasebi, A.; Yu, J.-L.; Li, X.-C.; Meesri, C. Experimental Study on Microwave Drying of Chinese and Indonesian Low-Rank Coals. Fuel Process. Technol. 2011, 92, 1821–1829. DOI: 10.1016/j.fuproc.2011.04.004.
  • Fu, J.-M.; Wang, J. Enhanced Slurryability and Rheological Behaviors of Two Low-Rank Coals by Thermal and Hydrothermal Pretreatments. Powder Technol. 2014, 266, 183–190. DOI: 10.1016/j.powtec.2014.06.034.
  • Yu, J.-L.; Tahmasebi, A.; Han, Y.-N.; Yin, F.-K.; Li, X.-C. A Review on Water in Low Rank Coals: The Existence, Interaction with Coal Structure and Effects on Coal Utilization. Fuel Process. Technol. 2013, 106, 9–20. DOI: 10.1016/j.fuproc.2012.09.051.
  • Han, Y.-N.; Bai, Z.-Q.; Liao, J.-J.; Bai, J.; Dai, X.; Li, X.; Xu, J.-L.; Li, W. Effects of Phenolic Hydroxyl and Carboxyl Groups on the Concentration of Different Forms of Water in Brown Coal and Their Dewatering Energy. Fuel Process. Technol. 2016, 154, 7–18. DOI: 10.1016/j.fuproc.2016.08.006.
  • Ozaki, J. I.; Nishiyama, Y.; Guy, P. J.; Perry, G. J.; Allardice, D. J. Role of Carboxyl Groups in the Disintegration of Brown Coal Briquettes by Water Sorption. Fuel Process. Technol. 1997, 50, 57–68. DOI: 10.1016/S0378-3820(96)01059-4.
  • Yu, Y.-J.; Liu, J.-Z.; Cen, K.-F. Properties of Coal Water Slurry Prepared with the Solid and Liquid Products of Hydrothermal Dewatering of Brown Coal. Ind. Eng. Chem. Res. 2014, 53, 4511–4517. DOI: 10.1021/ie5000592.
  • Liao, J.-J.; Fei, Y.; Marshall, M.; Chaffee, A. L.; Chang, L.-P. Hydrothermal Dewatering of a Chinese Lignite and Properties of the Solid Products. Fuel 2016, 180, 473–480. DOI: 10.1016/j.fuel.2016.04.027.
  • Ge, L.-C.; Zhang, Y.-W.; Xu, C.; Wang, Z.-H.; Zhou, J.-H.; Cen, K.-F. Influence of the Hydrothermal Dewatering on the Combustion Characteristics of Chinese Low-Rank Coals. Appl. Therm. Eng. 2015, 90, 174–181. [Database] DOI: 10.1016/j.applthermaleng.2015.07.015.
  • Hulston, J.; Favas, G.; Chaffee, A. L. Physico-Chemical Properties of Loy Yang Lignite Dewatered by Mechanical Thermal Expression. Fuel 2005, 84, 1940–1948. DOI: 10.1016/j.fuel.2005.03.024.
  • Butler, C. J.; Green, A. M.; Chaffee, A. L. MTE Water Remediation Using Loy Yang Brown Coal as a Filter Bed Adsorbent. Fuel 2008, 87, 894–904. DOI: 10.1016/j.fuel.2007.05.032.
  • Wheeler, R. A.; Hoadley, A. F. A.; Clayton, S. A. Modelling the Mechanical Thermal Expression Behaviour of Lignite. Fuel 2009, 88, 1741–1751. DOI: 10.1016/j.fuel.2009.03.037.
  • Ge, L.-C.; Zhang, Y.-W.; Wang, Z.-H.; Zhou, J.-H.; Cen, K.-F. Effects of Microwave Irradiation Treatment on Physicochemical Characteristics of Chinese Low-Rank Coals. Energy Convers. Manage. 2013, 71, 84–91. DOI: 10.1016/j.enconman.2013.03.021.
  • Cheng, J.; Zhou, F.; Wang, X.; Liu, J.-Z.; Zhou, J.-H.; Cen, K.-F. Physicochemical Properties of Indonesian Lignite Continuously Modified in a Tunnel-Type Microwave Oven for Slurribility Improvement. Fuel 2015, 150, 493–500. DOI: 10.1016/j.fuel.2015.02.051.
  • Ren, Y.-G.; Zheng, J.-P.; Yang, X.; Xu, Z.-Q.; Cao, Z.-H. Improvement on Slurry Ability of Lignite under Microwave Irradiation. Fuel 2017, 191, 230–238. DOI: 10.1016/j.fuel.2016.11.047.
  • Pickles, C. A.; Gao, F.; Kelebek, S. Microwave Drying of a Low-Rank Sub-Bituminous Coal. Miner. Eng. 2014, 62, 31–42. DOI: 10.1016/j.mineng.2013.10.011.
  • Sahoo, B. K.; De, S.; Meikap, B. C. Improvement of Grinding Characteristics of Indian Coal by Microwave Pre-Treatment. Fuel Process. Technol. 2011, 92, 1928. DOI: 10.1016/j.fuproc.2011.05.012.
  • Hong, Y.-D.; Lin, B.-Q.; Nie, W.; Zhu, C.-J.; Wang, Z.; Li, H. Microwave Irradiation on Pore Morphology of Coal Powder. Fuel 2018, 227, 434–447. DOI: 10.1016/j.fuel.2018.04.066.
  • Ren, Y.-G.; Zheng, J.-X.; Xu, Z.-Q.; Zhang, Y.-X.; Zheng, J.-P. Petroleum Coke Facilitate the Upgrade of Lignite under Microwave Irradiation for Slurryability Improvement. Fuel 2018, 223, 414–421. DOI: 10.1016/j.fuel.2018.03.001.
  • Wu, J.-H.; Wang, J.; Liu, J.-Z.; Yang, Y.-M.; Cheng, J.; Wang, Z.-H.; Zhou, J.-H.; Cen, K.-F. Moisture Removal Mechanism of Low-Rank Coal by Hydrothermal Dewatering: Physicochemical Property Analysis and DFT Calculation. Fuel 2017, 187, 242–249. DOI: 10.1016/j.fuel.2016.09.071.
  • Choi, H.; Thiruppathiraja, C.; Kim, S.; Rhim, Y.; Lim, J.; Lee, S. Moisture Readsorption and Low Temperature Oxidation Characteristics of Upgraded Low Rank Coal. Fuel Process. Technol. 2011, 92, 2005, 2005–2010. DOI: 10.1016/j.fuproc.2011.05.025.
  • Zhou, Z.-J.; Li, X.; Liang, J.-M.; Liu, J.-Z.; Zhou, J.-H.; Cen, K.-F. Surface Coating Improves Coal-Water Slurry Formation of Shangwan Coal. Energy Fuels 2011, 25, 3590–3597. DOI: 10.1021/ef200529h.
  • Zhang, J.-P.; Zhang, C.; Qiu, Y.-Q.; Chen, L.; Tan, P.; Chen, G. Evaluation of Moisture Readsorption and Combustion Characteristics of a Lignite Thermally Upgraded with the Addition of Asphalt. Energy Fuels 2014, 28, 7680–7688. DOI: 10.1021/ef5019115.
  • Nalaskowski, J.; Veeramasuneni, S.; Hupka, J.; Miller, J. D. Interactions between Fossil Resin and Coal in the Presence of Anionic and Cationic Surfactants. Colloids Surfaces A Physicochem. Eng. Asp. 1999, 154, 103–113. DOI: 10.1016/S0927-7757(98)00913-3.
  • Xing, Y.-W.; Li, C.-W.; Gui, X.-H.; Cao, Y.-J. Interaction Forces between Paraffin/Stearic Acid and Fresh/Oxidized Coal Particles Measured by Atomic Force Microscopy. Energy Fuels 2017, 31, 3305–3312. DOI: 10.1021/acs.energyfuels.6b02856.
  • Chen, X.; Wang, C.-Y.; Wang, Z.-Y.; Zhao, H.; Liu, H.-F. Preparation of High Concentration Coal Water Slurry of Lignite Based on Surface Modification Using the Second Fluid and the Second Particle. Fuel 2019, 242, 788–793. DOI: 10.1016/j.fuel.2019.01.007.
  • Karthikeyan, M. Minimization of Moisture Readsorption in Dried Coal Samples. Dry. Technol. 2008, 26, 948–955. DOI: 10.1080/07373930802142846.
  • Liu, J.-Z.; Wu, J.-H.; Zhu, J.-F.; Wang, Z.-H.; Zhou, J.-H.; Cen, K.-F. Removal of Oxygen Functional Groups in Lignite by Hydrothermal Dewatering: An Experimental and DFT Study. Fuel 2016, 178, 85–92. DOI: 10.1016/j.fuel.2016.03.045.
  • Zhang, Y.-L.; Jing, X.-X.; Jing, K.-G.; Chang, L.-P.; Bao, W.-R. Study on the Pore Structure and Oxygen-Containing Functional Groups Devoting to the Hydrophilic Force of Dewatered Lignite. Appl. Surf. Sci. 2015, 324, 90–98. DOI: 10.1016/j.apsusc.2014.10.126.
  • Sun, B.-L.; Yu, J.-L.; Tahmasebi, A.; Han, Y.-N. An Experimental Study on Binderless Briquetting of Chinese Lignite: Effects of Briquetting Conditions. Fuel Process. Technol. 2014, 124, 243–248. DOI: 10.1016/j.fuproc.2014.03.013.
  • McClements, D. J. Critical Review of Techniques and Methodologies for Characterization of Emulsion Stability. Crit. Rev. Food Sci. Nutr. 2007, 47, 611–649. DOI: 10.1080/10408390701289292.
  • Charrière, D.; Behra, P. Water Sorption on Coals. J. Colloid Interface Sci. 2010, 344, 460–467. DOI: 10.1016/j.jcis.2009.11.064.
  • Guo, Y.-Q.; Zhao, Y.-C.; Wang, S.-L.; Jiang, C.; Zhang, J.-Y. Relationship between the Zeta Potential and the Chemical Agglomeration Efficiency of Fine Particles in Flue Gas during Coal Combustion. Fuel 2018, 215, 756–765. DOI: 10.1016/j.fuel.2017.11.005.
  • Zhou, L.; Li, X.-P.; Zhang, R.-H.; Zhou, W.; Jin, J.; Wang, C.; Tian, Y.; Zhang, K. New Method for Utilizing Waste Tire Pyrolysis Residue to Prepare Slurry Fuel: Adsorption and Slurry Characteristics. Powder Technol. 2021, 386, 236–246. DOI: 10.1016/j.powtec.2021.03.049.
  • Zhang, W.-B.; Luo, J.; Huang, Y.; Zhang, C.; Du, L.; Guo, J.; Wu, J.; Zhang, X.; Zhu, J.-F.; Zhang, G.-H. Synthesis of a Novel Dispersant with Topological Structure by Using Humic Acid as Raw Material and Its Application in Coal Water Slurry Preparation. Fuel 2020, 262, 116576. DOI: 10.1016/j.fuel.2019.116576.
  • Zhang, G.-H.; Li, J.-G.; Zhu, J.-F.; Qu, Q.-Q.; Xiong, W. Syntheses and Evaluations of Three Sulfonated Polycondensate Dispersants for Coal-Water Slurries. Powder Technol. 2014, 254, 572–578. DOI: 10.1016/j.powtec.2014.01.069.
  • Zhu, J.-F.; Zhang, G.-H.; Miao, Z.; Shang, T. Synthesis and Performance of a Comblike Amphoteric Polycarboxylate Dispersant for Coal-Water Slurry. Colloids Surfaces A Physicochem. Eng. Asp. 2012, 412, 101–107. DOI: 10.1016/j.colsurfa.2012.07.023.
  • Mao, Y.-Q.; Li, Q.; Xia, W.-C.; Li, Y.-J.; Xie, G.-Y.; Peng, Y.-L. Pore Wetting Regulation of Porous Active Carbon by Sodium Oleate and Its Influence on Particles-Bubble Attachment: A Guidance for Improving Porous Mineral Floatability. Powder Technol. 2020, 375, 445–452. DOI: 10.1016/j.powtec.2020.08.001.
  • Chang, Z.-Y.; Chen, X.-M.; Peng, Y.-J. The Interaction between Diesel and Surfactant Triton X-100 and Their Adsorption on Coal Surfaces with Different Degrees of Oxidation. Powder Technol. 2019, 342, 840–847. DOI: 10.1016/j.powtec.2018.10.047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.