105
Views
0
CrossRef citations to date
0
Altmetric
Articles

Synergistic effects of Ag inclusion in titania on its photocatalytic activity for the removal of methyl orange

&
Pages 1031-1043 | Received 18 Feb 2021, Accepted 30 Sep 2021, Published online: 18 Oct 2021

References

  • ZhangXing, W. P.; Zhang, J.; Chen, L.; Yang, J.; Hu, X.; Zhao, L.; Wu, Y.; He, Y. Facile Preparation of Novel Nickel Sulfide Modified KNbO3 Heterojunction Composite and Its Enhanced Performance in Photocatalytic Nitrogen Fixation. J. Colloid Interface Sci. 2021, 590, 548–560. DOI: 10.1016/j.jcis.2021.01.086.
  • He, Y.; Zeng, L.; Feng, Z.; Zhang, Q.; Zhao, X.; Ge, S.; Hu, X.; Lin, H. Preparation, Characterization, and Photocatalytic Activity of Novel AgBr/ZIF-8 Composites for Water Purification. Adv. Powder Technol. 2020, 31, 439–447. DOI: 10.1016/j.apt.2019.11.002.
  • Chen, P.; Chen, L.; Ge, S.; Zhang, W.; Wu, M.; Xing, P.; Rotamond, T. B.; Lin, H.; Wu, Y.; He, Y. Microwave Heating Preparation of Phosphorus Doped g-C3N4 and Its Enhanced Performance for Photocatalytic H2 Evolution in the Help of Ag3PO4 Nanoparticles. Int. J. Hydrogen Energy 2020, 45, 14354–14367. DOI: 10.1016/j.ijhydene.2020.03.169.
  • Feng, Z.; Zeng, L.; Zhang, Q.; Ge, S.; Zhao, X.; Lin, H.; He, Y. Shifeng Ge; Xinyue Zhao; Hongjun Lin; Yiming He. In Situ Preparation of g-C3N4/Bi4O5I2 Complex and Its Elevated Photoactivity in Methyl Orange Degradation under Visible Light. J. Environ Sci. (China) 2020, 87, 149–162. DOI: 10.1016/j.jes.2019.05.032.
  • Sun, Y.; Gao, Y.; Zeng, J.; Guo, J.; Wang, H. Enhancing Visible-Light Photocatalytic Activity of Ag-TiO2 Nanowire Composites by One-Step Hydrothermal Process. Mater. Lett. 2020, 279, 128506–128509. DOI: 10.1016/j.matlet.2020.128506.
  • Zhang, Y.; Wang, T.; Zhou, M.; Wang, Y.; Zhang, Z. Hydrothermal Preparation of Ag-TiO2 Nanostructures with Exposed {001}/{101} Facets for Enhancing Visible Light Photocatalytic Activity. Ceram. Int. 2017, 43, 3118–3126. DOI: 10.1016/j.ceramint.2016.11.127.
  • Cheng, B.; Le.; Yu, Y. J. Preparation and Enhanced Photocatalytic Activity of Ag@TiO2 core-shell nanocomposite nanowires. J. Hazard. Mater. 2010, 177, 971–977. DOI: 10.1016/j.jhazmat.2010.01.013.
  • Hariharan, D.; Thangamuniyandi, P.; Jegatha Christy, A.; Vasantharaja, R.; Selvakumar, P.; Sagadevan, S.; Pugazhendhi, A.; Nehru, L. C. Enhanced Photocatalysis and Anticancer Activity of Green Hydrothermal Synthesized Ag@TiO2 Nanoparticles. J. Photochem. Photobiol. B. 2020, 202, 111636. DOI: 10.1016/j.jphotobiol.2019.111636.
  • Mao, H.; Fei, Z.; Bian, C.; Yu, L.; Chen, S.; Qian, Y. Facile Synthesis of High-Performance Photocatalysts Based on Ag/TiO2 Composites. Ceram. Int. 2019, 45, 12586–12589. DOI: 10.1016/j.ceramint.2019.03.109.
  • Santos, L. M.; Machado, W. A.; Franca, M. D.; Borges, K. A.; Paniago, R. M.; Patrocinio, A. O. T.; Machado, A. E. H. Structural Characterization of Ag-Doped TiO2 with Enhanced Photocatalytic Activity. RSC Adv. 2015, 5, 103752–103759. DOI: 10.1039/C5RA22647C.
  • Zheng, X.; Zhang, D.; Gao, Y.; Wu, Y.; Liu, Q.; Zhu, X. Synthesis and Characterization of Cubic Ag/TiO2 Nanocomposites for the Photocatalytic Degradation of Methyl Orange in Aqueous Solutions. Inorg. Chem. Commun. 2019, 110, 107589. DOI: 10.1016/j.inoche.2019.107589.
  • Pugazhenthiran, N.; Murugesan, S.; Anandan, S. High Surface Area Ag-TiO2 Nanotubes for Solar/Visible-Light Photocatalytic Degradation of Ceftiofur Sodium. J. Hazard. Mater. 2013, 263, 541–549. DOI: 10.1016/j.jhazmat.2013.10.011.
  • GuoYu, G. B.; Yu, P.; Chen, X. Synthesis and Photocatalytic Applications of Ag/TiO2-Nanotubes. Talanta 2009, 79, 570–575. DOI: 10.1016/j.talanta.2009.04.036.
  • Gogoi, D.; Namdeo, A.; Golder, A. K.; Peela, N. R. Animes Kumar Golder; Nageswara Rao Peela. Ag-Doped TiO2 Photocatalysts with Effective Charge Transfer for Highly Efficient Hydrogen Production through Water Splitting. Int. J. Hydrogen Energ 2020, 45, 2729–2744. DOI: 10.1016/j.ijhydene.2019.11.127.
  • Mogal, S. I.; Gandhi, V. G.; Mishra, M.; Tripathi, S.; Pradyuman, S.,T.; Joshi, A.; Shah, D. O. Single-Step Synthesis of Silver-Doped Titanium Dioxide: Influence of Silver on Structural, Textural, and Photocatalytic Properties. Ind. Eng. Chem. Res. 2014, 53, 5749–5758. DOI: 10.1021/ie404230q.
  • Chen, F.; Ma, T.; Zhang, T.; Zhang, Y.; Huang, H. Atomic-Level Charge Separation Strategies in Semiconductor-Based Photocatalysts. Adv. Mater. 2021, 33, 2005256. DOI: 10.1002/adma.202005256.
  • Hu, C.; Tu, S.; Tian, N.; Ma, T.; Zhang, Y.; Huang, H. Photocatalysis Enhanced by External Fields. Angew. Chem. Int. Ed. 2020, 60, 16309–16328. DOI: 10.1002/anie.202009518.
  • Wang, S.; Han, X.; Zhang, Y.; Tian, N.; Ma, T.; Huang, H. Inside-and-out Semiconductor Engineering for CO2 Photoreduction: From Recent Advances to New Trends. Small Struct. 2021, 2, 2000061. DOI: 10.1002/sstr.202000061.
  • Malligavathy, M.; Iyyapushpam, S.; Nishanthi, S. T.; Pathinettam Padiyan, D. Optimising the Crystallinity of Anatase TiO2 Nanospheres for the Degradation of Congo Red Dye. J. Exp. Nanosci. 2016, 11, 1074–1086. DOI: 10.1080/17458080.2016.1186292.
  • Anandan, S.; Kumar, P.; S; Pugazhenthiran, N.; Madhavan, J.; Maruthamuthu, P. Effect of Loaded Silver Nanoparticles on TiO2 for Photocatalytic Degradation of Acid Red 88. Sol. Energy Mater Sol Cells 2008, 92, 929–937. DOI: 10.1016/j.solmat.2008.02.020.
  • Xin, B.; Jing, L.; Ren, Z.; Wang, B.; Fu, H. Effects of Simultaneously Doped and Deposited Ag on the Photocatalytic Activity and Surface States of TiO2. J. Phys. Chem. B. 2005, 109, 2805–2809. DOI: 10.1021/jp0469618.
  • Culity, B. D. Elements of X-Ray Diffraction; Addison Wesley publishing Co, London, 1978; p. 284.
  • Wang, X.; Shen, J.; Pan, Q. Raman Spectroscopy of Sol–Gel Derived Titanium Oxide Thin Films. J. Raman Spectrosc. 2011, 42, 1578–1582. DOI: 10.1002/jrs.2899.
  • Das, S. K.; Bhunia, M. K.; Bhaumik, A. Self-Assembled TiO2 Nanoparticles: Mesoporosity, Optical and Catalytic Properties. Dalton Trans. 2010, 39, 4382–4390. DOI: 10.1039/c000317d.
  • Sun, L.; Li, J.; Wang, C.; Li, S.; Lai, Y.; Chen, H.; Lin, C. Ultrasound Aided Photochemical Synthesis of Ag Loaded TiO2 Nanotube Arrays to Enhance Photocatalytic Activity. J. Hazard. Mater. 2009, 171, 1045–1050.
  • He, J.; Ichinose, I.; Kunitake, T.; Nakao, A. In Situ Synthesis of Noble Metal Nanoparticles in Ultrathin TiO2−Gel Films by a Combination of Ion-Exchange and Reduction Processes. Langmuir 2002, 18, 10005–10010. DOI: 10.1021/la0260584.
  • Yang, L.; Kruse, B. Revised Kubelka-Munk theory. I. Theory and application. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2004, 21, 1933–1941. DOI: 10.1364/josaa.21.001933.
  • Yu, J.; G; Yue, L.; Liu, S. W.; Huang, B. B.; Zhang, X. Y. Hydrothermal Preparation and Photocatalytic Activity of Mesoporous Au-TiO2 Nanocomposite Microspheres. J. Colloid Interface Sci. 2009, 334, 58–64. DOI: 10.1016/j.jcis.2009.03.034.
  • Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism. Nature 1992, 359, 710–712. DOI: 10.1038/359710a0.
  • Zhang, Y. X.; Li, G. H.; Jin, Y. X.; Zhang, Y.; Zhang, J.; Zhang, L. D. Hydrothermal Synthesis and Photoluminescence of TiO2 Nanowires. Chem. Phys. Lett. 2002, 365, 300–304. DOI: 10.1016/S0009-2614(02)01499-9.
  • Mani Rahulan, K.; Padmanathan, N.; Devaraj Stephen, L.; Charles Christopher, K. Structural Features and Existence of Three Photon Absorption in Ag Doped TiO2 Nanoparticles Synthesized by Sol–Gel Technique. J. Alloys Compd. 2013, 554, 432–437. DOI: 10.1016/j.jallcom.2012.11.152.
  • Mokhtar Mohamed, M.; Osman, G.; Khairou, K. S. Fabrication of Ag Nanoparticles Modified TiO2–CNT Heterostructures for Enhanced Visible Light Photocatalytic Degradation of Organic Pollutants and Bacteria. J. Environ. Chem. Eng. 2015, 3, 1847–1859. DOI: 10.1016/j.jece.2015.06.018.
  • Rouquerol, F.; Rouquerol, J.; Singh, K. Adsorption by Powders & Porous Solids: Principles, Methodology and Applications; Academic Press, San Diego, 1999; p. 93.
  • Wang, W.; Dong, L.; Wang, J.; Shi, X.; Han, S. Characterization and Photocatalytic Activity of Mesoporous TiO2 Prepared from an Ethanol–Diethyl Ether Binary Solvent System. Chem. Phys. Lett. 2014, 616-617, 1–5.
  • Gregg, S. J.; Singh, K. S. W. Adsorption, Surface Area and Porosity; Academic Press, London, 1982.
  • Sylwia, M.; Maria, T.; Antoni, M. Photocatalytic Degradation of Azo-Dye Acid Red 18. Desalination 2005, 185, 449–456.
  • Chen, Z.; Fang, L.; Dong, W.; Zheng, F.; Shen, M.; Wang, J. Inverse Opal Structured Ag/TiO2 Plasmonic Photocatalyst Prepared by Pulsed Current Deposition and Its Enhanced Visible Light Photocatalytic Activity. J. Mater. Chem. A 2014, 2, 824–832. DOI: 10.1039/C3TA13985A.
  • Girginov, C.; Stefchev, P.; Vitanov, P.; Dikov, H. Silver Doped TiO2 Photocatalyst for Methyl Orange Degradation. JESTR. 2012, 5, 14–17. DOI: 10.25103/jestr.054.03.
  • Kodom, T.; Rusen, E.; Călinescu, I.; Mocanu, A.; Şomoghi, R.; Dinescu, A.; Diacon, A.; Boscornea, C. Silver Nanoparticles Influence on Photocatalytic Activity of Hybrid Materials Based on TiO2 P25. J. Nanomater. 2015, 2015, 1–8. DOI: 10.1155/2015/210734.
  • Anbu Anjugam Vandarkuzhali, S.; Pugazhenthiran, N.; Mangalaraja, R. V.; Sathishkumar, P.; Viswanathan, B.; Anandan, S. Ultrasmall Plasmonic Nanoparticles Decorated Hierarchical Mesoporous TiO2 as an Efficient Photocatalyst for Photocatalytic Degradation of Textile Dyes. ACS Omega 2018, 3, 9834–9845. DOI: 10.1021/acsomega.8b01322.
  • Chen, K.; Feng, X.; Tian, H.; Li, Y.; Xie, K.; Hu, R.; Cai, Y.; Gu, H. Silver-Decorated Titanium Dioxide Nanotube Arrays with Improved Photocatalytic Activity for Visible Light Irradiation. J. Mater. Res. 2014, 29, 1302–1308. DOI: 10.1557/jmr.2014.116.
  • Cheng, Z.; Zhao, S.; Han, Z.; Zhang, Y.; Zhao, X.; Kang, L. A Novel Preparation of Ag@TiO2 Tubes and Their Potent Photocatalytic Degradation Efficiency. CrystEngComm 2016, 18, 8756–8761.
  • Sobana, N.; Muruganadham, M.; Swaminathan, M. Nano-Ag Particles Doped TiO2 for Efficient Photodegradation of Direct Azo Dyes. J. Mol. Catal. A Chem. 2006, 258, 124–132. DOI: 10.1016/j.molcata.2006.05.013.
  • Dodd, A. C.; McKinley, A. J.; Saunders, M.; Tsuzuki, T. Effect of Particle Size on the Photocatalytic Activity of Nanoparticulate Zinc Oxide. J. Nanopart. Res. 2006, 8, 43–51. DOI: 10.1007/s11051-005-5131-z.
  • Shan, Z. C.; Wu, J. J.; Xu, F. F.; Huang, F. Q.; Ding, H. M. Highly Effective Silver/Semiconductor Photocatalytic Composites Prepared by a Silver Mirror Reaction. J. Phys. Chem. C. 2008, 112, 15423–15428. DOI: 10.1021/jp804482k.
  • Disdier, J.; Herrmann, J. M.; Pichat, P. Oxygen Species Ionosorbed on Powder Photocatalyst Oxides from Room-Temperature Photoconductivity as a Function of Oxygen Pressure. J. Chem. Soc. Faraday Trans. 1981, 177, 2815–2826.
  • Blanchard, G.; Maunaye, M.; Martin, G. Removal of Heavy Metals from Waters by Means of Natural Zeolites. Water Res. 1984, 18, 1501–1507. DOI: 10.1016/0043-1354(84)90124-6.
  • Vasanth Kumar, K. Linear and Non-Linear Regression Analysis for the Sorption Kinetics of Methylene Blue onto Activated Carbon. J. Hazard Mater. B 2006, 137, 1538–1544. DOI: 10.1016/j.jhazmat.2006.04.036.
  • Zhang, Y.; Huang, Y.; Wang, Y.; Ji, X.; Shih, S.-J.; Jia, B. Study of nano-Ag Particles Doped TiO2 Prepared by Photocatalysis. J. Nanosci. Nanotechnol. 2009, 9, 3904–3908. DOI: 10.1166/jnn.2009.ns87.
  • Nainani, R.; Thakur, P.; Chaskar, M. Synthesis of Silver Doped TiO2 Nanoparticles for the Improved Photocatalytic Degradation of Methyl Orange. J. Mater. Sci. Eng. B 2012, 2, 52–58.
  • Binitha, N. N.; Yaakob, Z.; Reshmi, M. R.; Sugunan, S.; Ambili, V. K.; Zetty, A. A. Preparation and Characterization of Nano Silver-Doped Mesoporous Titania Photocatalysts for Dye Degradation. Catal. Today 2009, 147, S, S76–S80. DOI: 10.1016/j.cattod.2009.07.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.