333
Views
3
CrossRef citations to date
0
Altmetric
Articles

Impact of mixed surfactant composition on emulsion stability in saline environment: anionic and nonionic surfactants

, , , , ORCID Icon &
Pages 1103-1115 | Received 26 Aug 2021, Accepted 23 Oct 2021, Published online: 11 Nov 2021

References

  • Church, J.; Lundin, J. G.; Diaz, D.; Mercado, D.; Willner, M. R.; Lee, W. H.; Paynter, D. M. Identification and Characterization of Bilgewater Emulsions. Sci. Total Environ. 2019, 691, 981–995. DOI: 10.1016/j.scitotenv.2019.06.510.
  • Copeland, C. Cruise Ship Pollution: Background, Laws and Regulations, and Key Issues; Congressionnal Research Service. CRS Report for Congress: USA, 2009; Order Code: RL32450.
  • U.S. Environmental Protection Agency. Oily Bilgewater Separators; U.S. EPA Office of Wastewater Management: Washington DC, 2011; EPA-800-R-11-007.
  • U.S. Coast Guard. Marine Safety Information Bulletin; Oily Mixtures Management for Oceangoing Vessels of less than 400 Gross Tons; U.S. Coast Guard Office of Commercial Vessel Compliance: Washington, DC, 2018.
  • Son, J.; Shen, Y.; Yao, J.; Paynter, D.; Yu, X. Y. Surface Evolution of Synthetic Bilgewater Emulsion. Chemosphere 2019, 236, 124345. DOI: 10.1016/j.chemosphere.2019.124345.
  • Caplan, J. A.; Newton, C.; Kelemen, D. Technical Report: Novel Oil/Water Separator for Treatment of Oily Bilgewater. Mar. Technol. SNAME News 2000, 37, 111–115. DOI: 10.5957/mt1.2000.37.2.111.
  • Coca, J.; Gutiérrez, G.; Benito, J. M. Treatment of Oily Wastewater. NATO Sci. Peace Secur. Ser. C Environ. Secur. 2011, 101, 1–55.
  • Mehmood, T.; Ahmed, A.; Ahmad, A.; Ahmad, M. S.; Sandhu, M. A. Optimization of Mixed Surfactants-Based β-Carotene Nanoemulsions Using Response Surface Methodology: An Ultrasonic Homogenization Approach. Food Chem. 2018, 253, 179–184. DOI: 10.1016/j.foodchem.2018.01.136.
  • Mehmood, T. Optimization of the Canola Oil Based Vitamin E Nanoemulsions Stabilized by Food Grade Mixed Surfactants Using Response Surface Methodology. Food Chem. 2015, 183, 1–7. DOI: 10.1016/j.foodchem.2015.03.021.
  • Holland, P. M.; Rubingh, D. N. Mixed Surfactant Systems. Fuel Sci. Technol. Int. 1993, 11, 241–242.
  • Rao, P.; He, M. Adsorption of Anionic and Nonionic Surfactant Mixtures from Synthetic Detergents on Soils. Chemosphere 2006, 63, 1214–1221. DOI: 10.1016/j.chemosphere.2005.08.067.
  • Chanthamalee, J.; Wongchitphimon, T.; Luepromchai, E. Treatment of Oily Bilge Water from Small Fishing Vessels by Puf-Immobilized Gordonia sp. JC11. Water Air Soil Pollut. 2013, 224, 1601.
  • Catalfamo, M.; Santisi, S.; Catalfamo, M.; Mancini, G.; Hassanshahian, M.; Cappello, S. Isolation of Alcanivorax dieselolei from Saline Bilge Waste (Waters) Originated from Marine Transportation. Int. J. Microbiol. Appl. 2015, 2(2), 45–49.
  • Walstra, P. Principles of Emulsion Formation. Chem. Eng. Sci. 1993, 48, 333–349. DOI: 10.1016/0009-2509(93)80021-H.
  • Tcholakova, S.; Denkov, N. D.; Danner, T. Role of Surfactant Type and Concentration for the Mean Drop Size during Emulsification in Turbulent Flow. Langmuir 2004, 20, 7444–7458. DOI: 10.1021/la049335a.
  • Church, J.; Willner, M. R.; Renfro, B. R.; Chen, Y.; Diaz, D.; Lee, W. H.; Dutcher, C. S.; Lundin, J. G.; Paynter, D. M. Impact of Interfacial Tension and Critical Micelle Concentration on Bilgewater Oil Separation. J. Water Process Eng. 2021, 39, 101684. DOI: 10.1016/j.jwpe.2020.101684.
  • Kedar, V.; Bhagwat, S. S. Effect of Salinity on the IFT between Aqueous Surfactant Solution and Crude Oil. Pet. Sci. Technol. 2018, 36, 835–842. DOI: 10.1080/10916466.2018.1447953.
  • El‐Hamouz, A. Effect of Surfactant Concentration and Operating Temperature on the Drop Size Distribution of Silicon Oil Water Dispersion. J. Dispers. Sci. Technol. 2007, 28, 797–804. DOI: 10.1080/01932690701345893.
  • Davis, C. R.; Martinez, C. J.; Howarter, J. A.; Erk, K. A. Impact of Saltwater Environments on the Coalescence of Oil-in-Water Emulsions Stabilized by an Anionic Surfactant. ACS EST Water 2021, 1, acsestwater.1c00066. DOI: 10.1021/acsestwater.1c00066.
  • Church, J.; Paynter, D. M.; Lee, W. H. In Situ Characterization of Oil-in-Water Emulsions Stabilized by Surfactant and Salt Using Microsensors. Langmuir 2017, 33, 9731–9739. DOI: 10.1021/acs.langmuir.7b01558.
  • Li, R. F.; Yan, W.; Liu, S.; Hirasaki, G. J.; Miller, C. A. Foam Mobility Control for Surfactant Enhanced Oil Recovery. SPE J. 2010, 15, 928–948. DOI: 10.2118/113910-PA.
  • Sagisaka, M.; Fujii, T.; Koike, D.; Yoda, S.; Takebayashi, Y.; Furuya, T.; Yoshizawa, A.; Sakai, H.; Abe, M.; Otake, K. Surfactant-Mixing Effects on the Interfacial Tension and the Microemulsion Formation in Water/Supercritical CO2 System. Langmuir 2007, 23, 2369–2375. DOI: 10.1021/la062789i.
  • Ziani, K.; Chang, Y.; McLandsborough, L.; McClements, D. J. Influence of Surfactant Charge on Antimicrobial Efficacy of Surfactant-Stabilized Thyme Oil Nanoemulsions. J Agric Food Chem. 2011, 59, 6247–6255. DOI: 10.1021/jf200450m.
  • Thakkar, K.; Bharatiya, B.; Shah, D. O.; Ray, D.; Aswal, V. K.; Bahadur, P. Interaction of Ionic Liquid Type Cationic Surfactants with Triton X-100 Nonionic Micelles. Colloids Surf. A Physicochem. Eng. Asp. 2015, 484, 547–557. DOI: 10.1016/j.colsurfa.2015.08.039.
  • Aoudia, M.; Al-Maamari, T.; Al-Salmi, F. Intramolecular and Intermolecular Ion-Dipole Interactions in Sodium Lauryl Ether Sulfates (SLES) Self-Aggregation and Mixed Micellization with Triton X-100. Colloids Surf. A Physicochem. Eng. Asp. 2009, 335, 55–61. DOI: 10.1016/j.colsurfa.2008.10.026.
  • Barra Caracciolo, A.; Cardoni, M.; Pescatore, T.; Patrolecco, L. Characteristics and Environmental Fate of the Anionic Surfactant Sodium Lauryl Ether Sulphate (SLES) Used as the Main Component in Foaming Agents for Mechanized Tunnelling. Environ. Pollut. 2017, 226, 94–103. DOI: 10.1016/j.envpol.2017.04.008.
  • Berry, J. D.; Neeson, M. J.; Dagastine, R. R.; Chan, D. Y. C.; Tabor, R. F. Measurement of Surface and Interfacial Tension Using Pendant Drop Tensiometry. J. Colloid Interface Sci. 2015, 454, 226–237. DOI: 10.1016/j.jcis.2015.05.012.
  • Tajima, K. Radiotracer Studies on Adsorption of Surface Active Substance at Aqueous Surface. II. The Effect of Excess Salt on the Adsorption of Sodium Dodecylsulfate. BCSJ 1970, 43, 3063–3066. DOI: 10.1246/bcsj.43.3063.
  • Martínez-Balbuena, L.; Arteaga-Jiménez, A.; Hernández-Zapata, E.; Márquez-Beltrán, C. Applicability of the Gibbs Adsorption Isotherm to the Analysis of Experimental Surface-Tension Data for Ionic and Nonionic Surfactants. Adv. Colloid Interface Sci. 2017, 247, 178–184. DOI: 10.1016/j.cis.2017.07.018.
  • Israelachvili, J. N. Intermolecular and Surface Forces; Academic Press: New York, 1991.
  • Abbott, S. Surfactant Science: Principles and Practice. Creative commons, 2016. http://www.stevenabbott.co.uk/practical-surfactants/the-book.php (accessed Aug 15, 2020)
  • Goodwin, J. Colloids and Interfaces with Surfactants and Polymers; John Wiley & Sons, 2009.
  • McClements, D. J. Ultrasonic Determination of Depletion Flocculation in Oil-in-Water Emulsions Containing a Non-Ionic Surfactant. Colloids Surf. A Physicochem. Eng. Asp. 1994, 90, 25–35. DOI: 10.1016/0927-7757(94)02881-8.
  • Xu, H.; Penfold, J.; Thomas, R. K.; Petkov, J. T.; Tucker, I.; Webster, J. P. R. The Formation of Surface Multilayers at the Air-Water Interface from Sodium Polyethylene Glycol Monoalkyl Ether Sulfate/AlCl(3) Solutions: The Role of the Size of the Polyethylene Oxide Group. Langmuir 2013, 29, 11656–11666. DOI: 10.1021/la4030348.
  • Denkova, P. S.; Lokeren, L. V.; Verbruggen, I.; Willem, R. Self-Aggregation and Supramolecular Structure Investigations of Triton X-100 and SDP2S by NOESY and Diffusion Ordered NMR Spectroscopy. J. Phys. Chem. B 2008, 112, 10935–10941. DOI: 10.1021/jp802830g.
  • Robson, R. J.; Dennis, E. A. The Size, Shape, and Hydration of Nonionic Surfactant Micelles. Triton X-100. J. Phys. Chem. 1977, 81, 1075–1078. DOI: 10.1021/j100526a010.
  • Yekeen, N.; Manan, M. A.; Idris, A. K.; Samin, A. M. Influence of Surfactant and Electrolyte Concentrations on Surfactant Adsorption and Foaming Characteristics. J. Pet. Sci. Eng. 2017, 149, 612–622. DOI: 10.1016/j.petrol.2016.11.018.
  • Muherei, M. A.; Junin, R. Investigating Synergism in Critical Micelle Concentration of Anionic-Nonionic Surfactant Mixtures before and after Equilibration with Shale. J. Appl. Sci. Res. 2009, 5, 181–189.
  • Franks, G. V.; Djerdjev, A. M.; Beattie, J. K. Absence of Specific Cation or Anion Effects at Low Salt Concentrations on the Charge at the Oil/Water Interface. Langmuir 2005, 21, 8670–8674. DOI: 10.1021/la051379b.
  • Beattie, J. K.; Djerdjev, A. M. The Pristine Oil/Water Interface: Surfactant-Free Hydroxide-Charged Emulsions. Angew. Chem. Int. Ed. Engl. 2004, 43, 3568–3571. DOI: 10.1002/anie.200453916.
  • Zdrali, E.; Okur, H. I.; Roke, S. Specific Ion Effects at the Interface of Nanometer-Sized Droplets in Water: Structure and Stability. J. Phys. Chem. C 2019, 123, 16621–16630. DOI: 10.1021/acs.jpcc.9b01001.
  • Kirby, S. M.; Anna, S. L.; Walker, L. M. Sequential Adsorption of an Irreversibly Adsorbed Nonionic Surfactant and an Anionic Surfactant at an Oil/Aqueous Interface. Langmuir 2015, 31, 4063–4071. DOI: 10.1021/la504969v.
  • El-Batanoney, M.; Abdel-Moghny, T.; Ramzi, M. The Effect of Mixed Surfactants on Enhancing Oil Recovery. J. Surfact. Deterg. 1999, 2, 201–205. DOI: 10.1007/s11743-999-0074-7.
  • Aziz, U. A.; Adnan, N.; Sohri, M. Z. R.; Mohshim, D. F.; Idris, A. K.; Azman, M. A. Characterization of Anionic–Nonionic Surfactant Mixtures for Enhanced Oil Recovery. J. Solution Chem. 2019, 48, 1617–1637. DOI: 10.1007/s10953-019-00902-1.
  • McClements, D. J.; Jafari, S. M. Improving Emulsion Formation, Stability and Performance Using Mixed Emulsifiers: A Review. Adv. Colloid Interface Sci. 2018, 251, 55–79. DOI: 10.1016/j.cis.2017.12.001.
  • Vilasau, J.; Solans, C.; Gómez, M. J.; Dabrio, J.; Mújika-Garai, R.; Esquena, J. Phase Behaviour of a Mixed Ionic/Nonionic Surfactant System Used to Prepare Stable Oil-in-Water Paraffin Emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2011, 384, 473–481. DOI: 10.1016/j.colsurfa.2011.05.029.
  • Vilasau, J.; Solans, C.; Gómez, M. J.; Dabrio, J.; Mújika-Garai, R.; Esquena, J. Stability of Oil-in-Water Paraffin Emulsions Prepared in a Mixed Ionic/Nonionic Surfactant System. Colloids Surf. A Physicochem. Eng. Asp. 2011, 389, 222–229. DOI: 10.1016/j.colsurfa.2011.08.023.
  • Sanatkaran, N.; Masalova, I.; Malkin, A. Y. Effect of Surfactant on Interfacial Film and Stability of Highly Concentrated Emulsions Stabilized by Various Binary Surfactant Mixtures. Colloids Surf. A Physicochem. Eng. Asp. 2014, 461, 85–91. DOI: 10.1016/j.colsurfa.2014.07.031.
  • McLaughlin, C.; Falatko, D.; Danesi, R.; Albert, R. Characterizing Shipboard Bilgewater Effluent before and after Treatment. Environ. Sci. Pollut. Res. Int. 2014, 21, 5637–5652. DOI: 10.1007/s11356-013-2443-x.
  • Rudel, H.; Seitz, W. Corrosion inhibiting lubricating composition. U.S. Patent 2,991,251, Jul 4, 1957.
  • Wasilewski, T.; Sulek, M. W. Paraffin Oil Solutions of the Mixture of Sorbitan Monolaurate-Ethoxylated Sorbitan Monolaurate as Lubricants. Wear 2006, 261, 230–234. DOI: 10.1016/j.wear.2005.10.005.
  • Fan, J.; Zhu, H.; Li, R.; Chen, N. Montmorillonite Modified by Cationic and Nonionic Surfactants as High-Performance Fluid-Loss-Control Additive in Oil-Based Drilling Fluids. J. Dispers. Sci. Technol. 2015, 36, 569–576. DOI: 10.1080/01932691.2014.917052.
  • Huang, Z.; Xu, Z.; Quan, Y.; Sui, D.; Sun, Y.; Zhao, J.; Sui, D.; Zhao, F.; Xu, J. Research on a New Oil Based Drilling Fluid System. IOP Conf. Ser. Earth Environ. Sci. 2018, 170, 22044.
  • Donald, C.; Van, S. Solvent soaps and methods employing same. U.S. Patent No. 5,723,423, Mar 3. 1998.
  • Reddy, S. R.; Fogler, H. S. Emulsion Stability: Determination from Turbidity. J. Colloid Interface Sci. 1981, 79, 101–104. DOI: 10.1016/0021-9797(81)90052-7.
  • Lee, M.; Kang, H.; Do, W. Application of Nonionic Surfactant-Enhanced in Situ Flushing to a Diesel Contaminated Site. Water Res. 2005, 39, 139–146. DOI: 10.1016/j.watres.2004.09.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.