240
Views
14
CrossRef citations to date
0
Altmetric
Articles

Synthesis of activated carbon from walnut wood and magnetized with cobalt ferrite (CoFe2O4) and its application in removal of cephalexin from aqueous solutions

, , , , , & show all
Pages 1183-1194 | Received 04 Aug 2021, Accepted 13 Nov 2021, Published online: 06 Dec 2021

References

  • Xiong, Q.; Hu, L.-X.; Liu, Y.-S.; Zhao, J.-L.; He, L.-Y.; Ying, G.-G. Microalgae-Based Technology for Antibiotics Removal: From Mechanisms to Application of Innovational Hybrid Systems. Environ. Int. 2021, 155, 106594. DOI: 10.1016/j.envint.2021.106594.
  • Seidmohammadi, A.; Vaziri, Y.; Dargahi, A.; Nasab, H. Z. Improved Degradation of Metronidazole in a Heterogeneous photo-Fenton Oxidation System with PAC/Fe3O4 Magnetic Catalyst: biodegradability, Catalyst Specifications, Process Optimization, and Degradation Pathway. Biomass Conv. Biorefinery 2021, 1–17.
  • Al-Musawi, T. J.; Mahvi, A. H.; Khatibi, A. D.; Balarak, D. Effective Adsorption of Ciprofloxacin Antibiotic Using Powdered Activated Carbon Magnetized by Iron (III) Oxide Magnetic Nanoparticles. J. Porous Mater. 2021, 28, 835–852. DOI: 10.1007/s10934-021-01039-7.
  • Seid-Mohammadi, A.; Ghorbanian, Z.; Asgari, G.; Dargahi, A. Photocatalytic Degradation of Metronidazole (MNZ) Antibiotic in Aqueous Media Using Copper Oxide Nanoparticles Activated by H. DWT. 2020, 193, 369–380. DOI: 10.5004/dwt.2020.25772.
  • Khosravi, R.; Zarei, A.; Heidari, M.; Ahmadfazeli, A.; Vosughi, M.; Fazlzadeh, M. Application of ZnO and TiO 2 Nanoparticles Coated onto Montmorillonite in the Presence of H 2 O 2 for Efficient Removal of Cephalexin from Aqueous Solutions. Korean J. Chem. Eng. 2018, 35, 1000–1008. DOI: 10.1007/s11814-018-0005-0.
  • Hasani, K.; Peyghami, A.; Moharrami, A.; Vosoughi, M.; Dargahi, A. The Efficacy of Sono-electro-Fenton Process for Removal of Cefixime Antibiotic from Aqueous Solutions by Response Surface Methodology (RSM) and Evaluation of Toxicity of Effluent by Microorganisms. Arabian J. Chem. 2020, 13, 6122–6139. DOI: 10.1016/j.arabjc.2020.05.012.
  • Seid-Mohammadi, A.; Asgarai, G.; Ghorbanian, Z.; Dargahi, A. The Removal of Cephalexin Antibiotic in Aqueous Solutions by Ultrasonic Waves/Hydrogen Peroxide/Nickel Oxide Nanoparticles (US/H2O2/NiO) Hybrid Process. Separ. Sci. Technol. 2020, 55, 1558–1568. DOI: 10.1080/01496395.2019.1603241.
  • Balarak, D.; McKay, G. Utilization of MWCNTs/Al2O3 as Adsorbent for Ciprofloxacin Removal: Equilibrium, Kinetics and Thermodynamic Studies. J. Environ. Sci. Health A. Tox. Hazard Subst. Environ. Eng. 2021, 56, 324–333. DOI: 10.1080/10934529.2021.1873674.
  • Samarghandi, M. R.; Dargahi, A,; Rahmani, A.; Shabanloo, A.; Ansari, A.; Nematollahi, D. Application of a Fluidized Three-Dimensional Electrochemical Reactor with Ti/SnO2–Sb/b-PbO2 Anode and Granular Activated Carbon Particles for Degradation and Mineralization of 2, 4-dichlorophenol: Process Optimization and Degradation Pathway. Chemosphere. 2021, 279, 130640. DOI: 10.1016/j.chemosphere.2021.130640.
  • Suyamud, B.; Lohwacharin, J.; Yang, Y.; Sharma, V. K. Antibiotic Resistant Bacteria and Genes in Shrimp Aquaculture Water: Identification and Removal by Ferrate(VI)). J. Hazard. Mater. 2021, 420, 126572. DOI: 10.1016/j.jhazmat.2021.126572.
  • Balarak, D.; Mostafapour, F.; Bazrafshan, E.; Saleh, T. A. Studies on the Adsorption of Amoxicillin on Multi-Wall Carbon Nanotubes. Water Sci. Technol. 2017, 75, 1599–1606. DOI: 10.2166/wst.2017.025.
  • Balarak, D.; Mostafapour, F.; Azarpira, H. Adsorption Isotherm Studies of Tetracycline Antibiotics from Aqueous Solutions by Maize Stalks as a Cheap Biosorbent. Int. J. Pharmacy Technol. 2016, 8, 16664–16675.
  • Gulkowska, A.; Leung, H. W.; So, M. K.; Taniyasu, S.; Yamashita, N.; Yeung, L. W.; Richardson, B. J.; Lei, A.; Giesy, J. P.; Lam, P. K. Removal of Antibiotics from Wastewater by Sewage Treatment Facilities in Hong Kong and Shenzhen, China. Water Res. 2008, 42, 395–403. DOI: 10.1016/j.watres.2007.07.031.
  • Samarghandi, M. R.; Asgari, G.; Shokoohi, R.; Dargahi, A.; Arabkouhsar, A. Removing Amoxicillin Antibiotic from Aqueous Solutions by Saccharomyces cerevisiae Bioadsorbent: Kinetic, Thermodynamic and Isotherm Studies. Dwt. 2019, 152, 306–315. DOI: 10.5004/dwt.2019.23941.
  • Sun, Y.; Cao, N.; Duan, C.; Wang, Q.; Ding, C.; Wang, J. Selection of Antibiotic Resistance Genes on Biodegradable and Non-Biodegradable Microplastics. J. Hazard. Mater. 2021, 409, 124979. DOI: 10.1016/j.jhazmat.2020.124979.
  • Wen, H.; Zhu, H.; Yan, B.; Bañuelos, G.; Shutes, B.; Wang, X.; Cao, S.; Cheng, R.; Tian, L. High Removal Efficiencies of Antibiotics and Low Accumulation of Antibiotic Resistant Genes Obtained in Microbial Fuel Cell-Constructed Wetlands Intensified by Sponge Iron. Sci. Total Environ. 2021, 806, 150220. DOI: 10.1016/j.scitotenv.2021.150220.
  • Samarghandi, M. R.; Al-Musawi, T. J.; Mohseni-Bandpi, A.; Zarrabi, M. Adsorption of Cephalexin from Aqueous Solution Using Natural Zeolite and Zeolite Coated with Manganese Oxide Nanoparticles. J. Mol. Liq. 2015, 211, 431–441. DOI: 10.1016/j.molliq.2015.06.067.
  • Noman, E.; Al-Gheethi, A.; Mohamed, R. M. S. R.; Talip, B.; Hossain, M. S.; Altowayti, W.; Ismail, N. Sustainable Approaches for Removal of Cephalexin Antibiotic from Non-Clinical Environments: A Critical Review. J. Hazard. Mater. 2021, 417, 126040. DOI: 10.1016/j.jhazmat.2021.126040.
  • Balarak, D.; Mengelizadeh, N.; Rajiv, P.; Chandrika, K. Photocatalytic Degradation of Amoxicillin from Aqueous Solutions by Titanium Dioxide Nanoparticles Loaded on Graphene Oxide. Environ. Sci. Pollution Res. 2021, 28, 49743–49754. DOI: 10.1007/s11356-021-13525-1
  • Afshin, S.; Rashtbari, Y.; Vosough, M.; Dargahi, A.; Fazlzadeh, M.; Behzad, A.; Yousefi, M. Application of Box–Behnken Design for Optimizing Parameters of Hexavalent Chromium Removal from Aqueous Solutions Using Fe3O4 Loaded on Activated Carbon Prepared from Alga: Kinetics and Equilibrium Study. J. Water Process. Eng. 2021, 42, 102113. DOI: 10.1016/j.jwpe.2021.102113.
  • Xie, Y.; Wan, J.; Yan, Z.; Wang, Y.; Xiao, T.; Hou, J.; Chen, H. J. C. E. J. Targeted Degradation of Sulfamethoxazole in Wastewater by Molecularly Imprinted MOFs in Advanced Oxidation Processes: degradation Pathways and Mechanism. Chem. Engin. J. 2022, 429, 132237. DOI: 10.1016/j.cej.2021.132237.
  • Wernke, G.; Silva, M. F.; da Silva, E. A.; Fagundes-Klen, M. R.; Suzaki, P. Y. R.; Triques, C. C.; Bergamasco, R. Ag and CuO Nanoparticles Decorated on Graphene Oxide/Activated Carbon as a Novel Adsorbent for the Removal of Cephalexin from Water. Colloids Surf. A: Physicochem. Engin. Aspects 2021, 627, 127203. DOI: 10.1016/j.colsurfa.2021.127203.
  • Yu, L.; Wang, L.; Liu, Y.; Sun, C.; Zhao, Y.; Hou, Z.; Peng, H.; Wang, S.; Wei, H. Pyrolyzed Carbon Derived from Red Soil as an Efficient Catalyst for Cephalexin Removal. Chemosphere 2021, 277, 130339. DOI: 10.1016/j.chemosphere.2021.130339.
  • Gou, Y.; Peng, L.; Xu, H.; Li, S.; Liu, C.; Wu, X.; Song, S.; Yang, C.; Song, K.; Xu, Y. Insights into the Degradation Mechanisms and Pathways of Cephalexin during Homogeneous and Heterogeneous photo-Fenton Processes. Chemosphere 2021, 285, 131417. DOI: 10.1016/j.chemosphere.2021.131417.
  • Wang, B.; Li, H.; Liu, T.; Guo, J. Enhanced Removal of Cephalexin and Sulfadiazine in Nitrifying Membrane-Aerated Biofilm Reactors. Chemosphere 2021, 263, 128224. DOI: 10.1016/j.chemosphere.2020.128224.
  • Azizi, A.; Dargahi, A.; Almasi, A. Biological Removal of Diazinon in a Moving Bed Biofilm Reactor–Process Optimization with Central Composite Design. Toxin Rev. 2019, 1–11. DOI: 10.1080/15569543.2019.1675708.
  • Balarak, D.; Taheri, Z.; Shim, M. J.; Lee, S.-M.; Jeon, C. Adsorption Kinetics and Thermodynamics and Equilibrium of Ibuprofen from Aqueous Solutions by Activated Carbon Prepared from Lemna Minor. Dwt. 2021, 215, 183–193. DOI: 10.5004/dwt.2021.26860.
  • Dehghan, A.; Zarei, A.; Jaafari, J.; Shams, M.; Khaneghah, A. M. Tetracycline Removal from Aqueous Solutions Using Zeolitic Imidazolate Frameworks with Different Morphologies: A Mathematical Modeling. Chemosphere 2019, 217, 250–260. DOI: 10.1016/j.chemosphere.2018.10.166.
  • Dil, E. A.; Ghaedi, M.; Asfaram, A. The Performance of Nanorods Material as Adsorbent for Removal of Azo Dyes and Heavy Metal Ions: application of Ultrasound Wave, Optimization and Modeling. Ultrason. Sonochem. 2017, 34, 792–802. DOI: 10.1016/j.ultsonch.2016.07.015.
  • Sadegh, H.; Ali, G. A.; Gupta, V. K.; Makhlouf, A. S. H.; Shahryari-Ghoshekandi, R.; Nadagouda, M. N.; Sillanpää, M.; Megiel, E. The Role of Nanomaterials as Effective Adsorbents and Their Applications in Wastewater Treatment. J. Nanostruct. Chem. 2017, 7, 1–14. DOI: 10.1007/s40097-017-0219-4.
  • Hasanzadeh, V.; Rahmanian, O.; Heidari, M. Cefixime Adsorption onto Activated Carbon Prepared by Dry Thermochemical Activation of Date Fruit Residues. Microchem. J. 2020, 152, 104261. DOI: 10.1016/j.microc.2019.104261.
  • Shokoohi, R.; Dargahi, A.; Gilan, R. A.; Nasab, H. Z.; Zeynalzadeh, D.; Mahmoudi, M. M. Magnetic Multi-Walled Carbon Nanotube as Effective Adsorbent for Ciprofloxacin (CIP) Removal from Aqueous Solutions: Isotherm and Kinetics Studies. Int. J. Chem. Reactor Engin. 2020, 18, 1–19. DOI: 10.1515/ijcre-2019-0130.
  • Liu, S.-S.; Li, J.-L.; Ge, L.-K.; Li, C.-L.; Zhao, J.-L.; Zhang, Q.-Q.; Ying, G.-G.; Chen, C.-E. Selective Diffusive Gradients in Thin-Films with Molecularly Imprinted Polymer for Measuring Fluoroquinolone Antibiotics in Waters. Sci. Total Environ. 2021, 790, 148194. DOI: 10.1016/j.scitotenv.2021.148194.
  • Bazrafshan, E.; Sarmadi, M.; Zarei, A. A.; Barjasteh, F.; Davoudi, M.; Najafi Saleh, H. Comparison of the Efficiency of Almond Shell Ash as a Natural Adsorbent versus Commercial Activated Carbon in Removal of Basic Red 18 Dye from Aqueous Solutions. J. Torbat Heydariyeh Univ. Med. Sci. 2018, 5, 1–11.
  • Dargahi, A.; Samarghandi, M. R.; Shabanloo, A.; Mahmoudi, M. M.; Nasab, H. Z. Statistical Modeling of Phenolic Compounds Adsorption onto Low-Cost Adsorbent Prepared from Aloe Vera Leaves Wastes Using CCD-RSM Optimization: effect of Parameters, Isotherm, and Kinetic Studies. Biomass Conversion Biorefinery 2021, 1–15.
  • Hamzezadeh, A.; Rashtbari, Y.; Afshin, S.; Morovati, M.; Vosoughi, M. Application of Low-Cost Material for Adsorption of Dye from Aqueous Solution. Int. J. Environ. Anal. Chem. 2020, 1–16. DOI: 10.1080/03067319.2020.1720011.
  • Rashtbari, Y.; Hazrati, S.; Afshin, S.; Fazlzadeh, M.; Vosoughi, M. Data on Cephalexin Removal Using Powdered Activated Carbon (PPAC) Derived from Pomegranate Peel. Data Brief. 2018, 20, 1434–1439. DOI: 10.1016/j.dib.2018.08.204.
  • Salehnia, S.; Barikbin, B.; Dorri, H. The Efficiency of Magnetic Carbon Activated by Iron Oxide Nanoparticles in Removing of Cu (II) from Aqueous Solutions. J. Birjand Univ. Med. Sci. 2016, 23, 44–55.
  • Kakavandi, B.; Rezaei Kalantary, R.; Jonidi Jafari, A.; Esrafily, A.; Gholizadeh, A.; Azari, A. Efficiency of Powder Activated Carbon Magnetized by Fe3O4 Nanoparticles for Amoxicillin Removal from Aqueous Solutions: Equilibrium and Kinetic Studies of Adsorption Process. Iranian J. Health Environ. 2014, 7, 34.
  • Badran, M. M.; Harisa, G. I.; AlQahtani, S. A.; Alanazi, F. K.; Zoheir, K. M. Pravastatin-Loaded Chitosan Nanoparticles: Formulation, Characterization and Cytotoxicity Studies. J. Drug Delivery Sci. Technol. 2016, 32, 1–9. DOI: 10.1016/j.jddst.2016.01.004.
  • Rashtbari, Y.; Hazrati, S.; Azari, A.; Afshin, S.; Fazlzadeh, M.; Vosoughi, M. A Novel, Eco-Friendly and Green Synthesis of PPAC-ZnO and PPAC-nZVI Nanocomposite Using Pomegranate Peel: Cephalexin Adsorption Experiments, Mechanisms, Isotherms and Kinetics. Adv. Powder Technol. 2020, 31, 1612–1623. DOI: 10.1016/j.apt.2020.02.001.
  • Heibati, B.; Rodriguez-Couto, S.; Al-Ghouti, M. A.; Asif, M.; Tyagi, I.; Agarwal, S.; Gupta, V. K. Kinetics and Thermodynamics of Enhanced Adsorption of the Dye AR 18 Using Activated Carbons Prepared from Walnut and Poplar Woods. J. Mol. Liq 2015, 208, 99–105. DOI: 10.1016/j.molliq.2015.03.057.
  • Foroutan, R.; Mohammadi, R.; Ramavandi, B.; Bastanian, M. Removal Characteristics of Chromium by Activated Carbon/CoFe 2 O 4 Magnetic Composite and Phoenix Dactylifera Stone Carbon. Korean J. Chem. Eng. 2018, 35, 2207–2219. DOI: 10.1007/s11814-018-0145-2.
  • Naghizade Asl, M.; Mahmodi, N. M.; Teymouri, P.; Shahmoradi, B.; Rezaee, R.; Maleki, A. Adsorption of Organic Dyes Using Copper Oxide Nanoparticles: isotherm and Kinetic Studies. Desalin. Water Treat. 2016, 57, 25278–25287. DOI: 10.1080/19443994.2016.1151832.
  • Babaei, A. A.; Lima, E. C.; Takdastan, A.; Alavi, N.; Goudarzi, G.; Vosoughi, M.; Hassani, G.; Shirmardi, M. Removal of Tetracycline Antibiotic from Contaminated Water Media by Multi-Walled Carbon Nanotubes: operational Variables, Kinetics, and Equilibrium Studies. Water Sci. Technol. 2016, 74, 1202–1216. DOI: 10.2166/wst.2016.301.
  • Fazlzadeh, M.; Rahmani, K.; Zarei, A.; Abdoallahzadeh, H.; Nasiri, F.; Khosravi, R. A Novel Green Synthesis of Zero Valent Iron Nanoparticles (NZVI) Using Three Plant Extracts and Their Efficient Application for Removal of Cr (VI) from Aqueous Solutions. Adv. Powder Technol. 2017, 28, 122–130. DOI: 10.1016/j.apt.2016.09.003.
  • Zhao, Q.; Zhao, H.; Yan, L.; Bi, M.; Li, Y.; Zhou, Y.; Song, Z.; Jiang, T. Efficient Removal of Pb (II) from Aqueous Solution by CoFe2O4/Graphene Oxide Nanocomposite: kinetic, Isotherm and Thermodynamic. J. Nanosci. Nanotechnol. 2017, 17, 3951–3958. DOI: 10.1166/jnn.2017.13100.
  • Alipour, M.; Vosoughi, M.; Mokhtari, S. A.; Sadeghi, H.; Rashtbari, Y.; Shirmardi, M.; Azad, R. Optimising the Basic Violet 16 Adsorption from Aqueous Solutions by Magnetic Graphene Oxide Using the Response Surface Model Based on the Box–Behnken Design. Int. J. Environ. Anal. Chem. 2021, 101, 758. DOI: 10.1080/03067319.2019.1671378.
  • Bijari, M.; Younesi, H.; Bahramifar, N. Optimization of Activated Carbon Production by Using K2CO3 at Different Temperatures for the Removal of Reactive Black 5 Dye from Aqueous Solutions. Iranian J. Health Environ. 2018, 10, 483–500.
  • Ghasemi, S. Cationic Dye Adsorption from Aqueous Soluble Using Activated Carbon of Grapefruit Peel, Optimized by Taghuchi Method. Modares Civil Engin. J. 2018, 18, 55–67.
  • Seidmohammadi, A.; Asgari, G.; Dargahi, A.; Leili, M.; Vaziri, Y.; Hayati, B.; Shekarchi, A.; Mobarakian, A.; Bagheri, A.; Nazari Khanghah, S. A Comparative Study for the Removal of Methylene Blue Dye from Aqueous Solution by Novel Activated Carbon Based Adsorbents. Progress in Color, Colorants Coatings 2019, 12, 133–144.
  • Alavi, S.; Shamshiri, S.; Pariz, Z.; Dargahi, A.; Mohamadi, M.; Fathi, S.; Amirian, T. Evaluating the Palm Leaves Efficiency as a Natural Adsorbent for Removing Cadmium from Aqueous Solutions: Isotherm Adsorption Study. Int. J. Pharma. Technol. 2016, 8, 13919–13929.
  • Sun, B.; Yuan, Y.; Li, H.; Li, X.; Zhang, C.; Guo, F.; Liu, X.; Wang, K.; Zhao, X. Waste-Cellulose-Derived Porous Carbon Adsorbents for Methyl Orange Removal. Chem. Engin. J. 2019, 371, 55–63. DOI: 10.1016/j.cej.2019.04.031.
  • Lee, H.-M.; An, K.-H.; Chung, D.-C.; Jung, S.-C.; Park, Y.-K.; Park, S.-J.; Kim, B.-J. Comparison Studies on Pore Development Mechanisms of Activated Hard Carbons from Polymeric Resins and Their Applications for Electrode Materials. Renew. Energy 2019, 144, 116–122. DOI: 10.1016/j.renene.2018.11.020.
  • Liu, W.; Xie, H.; Zhang, J.; Zhang, C. Sorption Removal of Cephalexin by HNO 3 and H 2 O 2 Oxidized Activated Carbons. Sci. China Chem. 2012, 55, 1959–1967. DOI: 10.1007/s11426-011-4488-3.
  • Tavasol, F.; Tabatabaie, T.; Ramavandi, B.; Amiri, F. Photocatalyst Production from Wasted Sediment and Quality Improvement with Titanium Dioxide to Remove Cephalexin in the Presence of Hydrogen Peroxide and Ultrasonic Waves: A Cost-Effective Technique. Chemosphere 2021, 284, 131337. DOI: 10.1016/j.chemosphere.2021.131337.
  • Samarghandi, M. R.; Dargahi, A.; Zolghadr Nasab, H.; Ghahramani, E.; Salehi, S. Degradation of Azo Dye Acid Red 14 (AR14) from Aqueous Solution Using H2 O2 /nZVI and S2 O82- /nZVI Processes in the Presence of UV Irradiation. Water Environ. Res. 2020, 92, 1173–1183. DOI: 10.1002/wer.1312.
  • Yegane Badi, M.; Vosoughi, M.; Sadeghi, H.; Mokhtari, S. A.; Mehralipour, J. Ultrasonic-Assisted H2O2/TiO2 Process in Catechol Degradation: kinetic, Synergistic and Optimisation via Response Surface Methodology. Int. J. Environ. Anal. Chem. 2020, 1–14. DOI: 10.1080/03067319.2020.1726335.
  • Pouretedal, H.; Sadegh, N. Effective Removal of Amoxicillin, Cephalexin, Tetracycline and Penicillin G from Aqueous Solutions Using Activated Carbon Nanoparticles Prepared from Vine Wood. J. Water Process Eng. 2014, 1, 64–73. DOI: 10.1016/j.jwpe.2014.03.006.
  • Miao, M.-S.; Liu, Q.; Shu, L.; Wang, Z.; Liu, Y.-Z.; Kong, Q. Removal of Cephalexin from Effluent by Activated Carbon Prepared from Alligator Weed: Kinetics, Isotherms, and Thermodynamic Analyses. Process Safety Environ. Protect. 2016, 104, 481–489. DOI: 10.1016/j.psep.2016.03.017.
  • Al-Khalisy, R. S.; Al-Haidary, A. M. A.; Al-Dujaili, A. H. Aqueous Phase Adsorption of Cephalexin onto Bentonite and Activated Carbon. Sep. Sci. Technol. 2010, 45, 1286–1294. DOI: 10.1080/01496391003689017.
  • Nezamzadeh-Ejhieh, A.; Tavakoli-Ghinani, S. Effect of a Nano-Sized Natural Clinoptilolite Modified by the Hexadecyltrimethyl Ammonium Surfactant on Cephalexin Drug Delivery. CR. Chim. 2014, 17, 49–61. DOI: 10.1016/j.crci.2013.07.009.
  • Rahmani, A. R.; Shabanloo, A.; Fazlzadeh, M.; Poureshgh, Y. Investigation of Operational Parameters Influencing in Treatment of Dye from Water by electro-Fenton Process. Desalin. Water Treat 2016, 57, 24387–24394. DOI: 10.1080/19443994.2016.1146918.
  • Abdoallahzadeh, H.; Alizadeh, B.; Khosravi, R.; Fazlzadeh, M. Efficiency of EDTA Modified Nanoclay in Removal of Humic Acid from Aquatic Solutions. J. Mazandaran Univ. Med. Sci. 2016, 26, 111–125.
  • Ahmed, M. B.; Zhou, J. L.; Ngo, H. H.; Guo, W. Adsorptive Removal of Antibiotics from Water and Wastewater: Progress and Challenges. Sci. Total Environ. 2015, 532, 112–126. DOI: 10.1016/j.scitotenv.2015.05.130.
  • Barjasteh-Askari, F.; Davoudi, M.; Dolatabadi, M.; Ahmadzadeh, S. Iron-Modified Activated Carbon Derived from Agro-Waste for Enhanced Dye Removal from Aqueous Solutions. Heliyon 2021, 7, e07191. DOI: 10.1016/j.heliyon.2021.e07191.
  • Fan, L.; Luo, C.; Lv, Z.; Lu, F.; Qiu, H. Preparation of Magnetic Modified Chitosan and Adsorption of Zn2+ from Aqueous Solutions. Colloids Surf B Biointerfaces 2011, 88, 574–581. DOI: 10.1016/j.colsurfb.2011.07.038.
  • Moussavi, G.; Alahabadi, A.; Yaghmaeian, K.; Eskandari, M. Preparation, Characterization and Adsorption Potential of the NH4Cl-Induced Activated Carbon for the Removal of Amoxicillin Antibiotic from Water. Chem. Engin. J. 2013, 217, 119–128. DOI: 10.1016/j.cej.2012.11.069.
  • Guler, U. A. Removal of Tetracycline from Aqueous Solutions Using Nanoscale Zero Valent Iron and Functional Pumice Modified Nanoscale Zero Valent Iron. J. Environ. Engin. Landscape Manage. 2017, 25, 223–233. DOI: 10.3846/16486897.2016.1210156.
  • Mohammad, A.; Khan, M. E.; Cho, M. H.; Yoon, T. Adsorption Promoted Visible-Light-Induced Photocatalytic Degradation of Antibiotic Tetracycline by Tin Oxide/Cerium Oxide Nanocomposite. Appl. Surf. Sci. 2021, 565, 150337. DOI: 10.1016/j.apsusc.2021.150337.
  • Schneider, F.; Leibner, T. First-Order Continuous-and discontinuous-Galerkin Moment Models for a Linear Kinetic Equation: Model Derivation and Realizability Theory. Comput. Phys. 2020, 416, 109547. DOI: 10.1016/j.jcp.2020.109547.
  • Barrera, D.; Dagnino, C.; Ibáñez, M. J.; Remogna, S. A Trivariate near-Best Blending Quadratic Quasi-Interpolant. Mathe. Comput. Simul. 2020, 176, 25–35. DOI: 10.1016/j.matcom.2019.10.005.
  • Kakavandi, B.; Kalantary, R. R.; Esrafily, A.; Jafari, A. J.; Azari, A. Isotherm, Kinetic and Thermodynamic of Reactive Blue 5 (RB5) Dye Adsorption Using Fe3O4 Nanoparticles and Activated Carbon Magnetic Composite. J. Color Sci. Technol. 2013, 7, 237–248.
  • Borna, M. O.; Pirsaheb, M.; Niri, M. V.; Mashizie, R. K.; Kakavandi, B.; Zare, M. R.; Asadi, A. Batch and Column Studies for the Adsorption of Chromium (VI) on Low-Cost Hibiscus Cannabinus Kenaf, a Green Adsorbent. J. Taiwan Inst. Chem. Eng. 2016, 68, 80–89. DOI: 10.1016/j.jtice.2016.09.022.
  • Ahmed, M. J.; Theydan, S. K. Adsorption of Cephalexin onto Activated Carbons from Albizia Lebbeck Seed Pods by Microwave-Induced KOH and K2CO3 Activations. Chem. Engin. J. 2012, 211–212, 200–207. DOI: 10.1016/j.cej.2012.09.089.
  • Kamal, K. H.; Attia, M.; Ammar, N. S.; Abou-Taleb, E. M. Kinetics and Isotherms of Lead Ions Removal from Wastewater Using Modified Corncob Nanocomposite. Inorg. Chem. Commun. 2021, 130, 108742. DOI: 10.1016/j.inoche.2021.108742.
  • Sadeghi, A.; Dehghan, A.; Asadzadeh, S.; Dolatabadi, M. Removal of Nitrate from Aqueous Solutions Using Saccharomyces cerevisiae Biosorbent: adsorption Isotherms and Kinetics. J. North Khorasan Univ. Med. Sci. 2014, 6, 441–449.
  • Ocampo-Pérez, R.; Rivera-Utrilla, J.; Gómez-Pacheco, C.; Sánchez-Polo, M.; López-Peñalver, J. Kinetic Study of Tetracycline Adsorption on Sludge-Derived Adsorbents in Aqueous Phase. Chem. Engin. J. 2012, 213, 88–96. DOI: 10.1016/j.cej.2012.09.072.
  • Liu, H.; Liu, W.; Zhang, J.; Zhang, C.; Ren, L.; Li, Y. Removal of Cephalexin from Aqueous Solutions by Original and Cu(II)/Fe(III) Impregnated Activated Carbons Developed from Lotus Stalks Kinetics and Equilibrium Studies. J. Hazard. Mater. 2011, 185, 1528–1535. DOI: 10.1016/j.jhazmat.2010.10.081.
  • Kong, Q.; Wang, Y-n.; Shu, L.; Miao, M-s. Isotherm, Kinetic, and Thermodynamic Equations for Cefalexin Removal from Liquids Using Activated Carbon Synthesized from Loofah Sponge. Desalin. Water Treat 2016, 57, 7933–7942. DOI: 10.1080/19443994.2015.1052991.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.