207
Views
7
CrossRef citations to date
0
Altmetric
Articles

Competitive adsorption of Ni(II) and Cu(II) ions from aqueous solution by vermiculite-alginate composite: batch and fixed-bed column studies

, , &
Pages 1402-1412 | Received 30 Jun 2021, Accepted 07 Dec 2021, Published online: 23 Dec 2021

References

  • Zoumis, T.; Calmano, W.; Förstner, U. Demobilization of Heavy Metals from Mine Waters. Acta Hydrochim. Hydrobiol. 2000, 28, 212–218. DOI: 10.1002/1521-401X(20004)28:4<212::AID-AHEH212>3.0.CO;2-U.
  • Rezai, B.; Allahkarami, E. Chapter 2—Wastewater Treatment Processes—Techniques, Technologies, Challenges Faced, and Alternative Solutions. In Soft Computing Techniques in Solid Waste and Wastewater Management; Karri, R. R., Ravindran, G., Dehghani, M. H., Eds.; Elsevier: Netherlands, 2021; pp. 35–53.
  • Farooq, U.; Kozinski, J. A.; Khan, M. A.; Athar, M. Biosorption of Heavy Metal Ions Using Wheat Based Biosorbents-A Review of the Recent Literature. Bioresour. Technol. 2010, 101, 5043–5053. DOI: 10.1016/j.biortech.2010.02.030.
  • Igder, A.; Fazlavi, A.; Allahkarami, E.; Dehghanipour, A. Optimization of Ni (II) & Co (II) Removal from Wastewater and Statistical Studies on the Results of Experimental Designs. Geosyst. Eng. 2019, 22, 91–100. DOI: 10.1080/12269328.2018.1477072.
  • Borba, C. E.; Guirardello, R.; Silva, E. A.; Veit, M. T.; Tavares, C. R. G. Removal of Nickel(II) Ions from Aqueous Solution by Biosorption in a Fixed Bed Column: Experimental and Theoretical Breakthrough Curves. Biochem. Eng. J. 2006, 30, 184–191. DOI: 10.1016/j.bej.2006.04.001.
  • Paulino, A. T.; Minasse, F. A. S.; Guilherme, M. R.; Reis, A. V.; Muniz, E. C.; Nozaki, J. Novel Adsorbent Based on Silkworm Chrysalides for Removal of Heavy Metals from Wastewaters. J Colloid Interface Sci. 2006, 301, 479–487. DOI: 10.1016/j.jcis.2006.05.032.
  • Rezai, B.; Allahkarami, E. Chapter 4—Application of Neural Networks in Wastewater Degradation Process for the Prediction of Removal Efficiency of Pollutants. In Soft Computing Techniques in Solid Waste and Wastewater Management; Karri, R. R., Ravindran, G., Dehghani, M. H., Eds.; Elsevier: Netherlands, 2021; pp. 75–93.
  • Malamis, S.; Katsou, E. A Review on Zinc and Nickel Adsorption on Natural and Modified Zeolite, Bentonite and Vermiculite: examination of Process Parameters, Kinetics and Isotherms. J. Hazard. Mater. 2013, 252–253, 428–461. DOI: 10.1016/j.jhazmat.2013.03.024.
  • O'Connell, D. W.; Birkinshaw, C.; O'Dwyer, T. F. Heavy Metal Adsorbents Prepared from the Modification of Cellulose: A Review. Bioresour. Technol. 2008, 99, 6709–6724. DOI: 10.1016/j.biortech.2008.01.036.
  • Duarte-Nass, C.; Rebolledo, K.; Valenzuela, T.; Kopp, M.; Jeison, D.; Rivas, M.; Azócar, L.; Torres-Aravena, Á.; Ciudad, G. Application of Microbe-Induced Carbonate Precipitation for Copper Removal from Copper-Enriched Waters: Challenges to Future Industrial Application. J. Environ. Manage. 2020, 256, 109938. DOI: 10.1016/j.jenvman.2019.109938.
  • Peng, G.; Deng, S.; Liu, F.; Li, T.; Yu, G. Superhigh Adsorption of Nickel from Electroplating Wastewater by Raw and Calcined Electroplating Sludge Waste. J. Cleaner Prod. 2020, 246, 118948. DOI: 10.1016/j.jclepro.2019.118948.
  • Allahkarami, E.; Igder, A.; Fazlavi, A.; Rezai, B. Prediction of Co (II) and Ni (II) Ions Removal from Wastewater Using Artificial Neural Network and Multiple Regression Models. Physicochem. Probl. Miner. Process. 2017, 53(2):1105–1118.
  • Alyüz, B.; Veli, S. Kinetics and Equilibrium Studies for the Removal of Nickel and Zinc from Aqueous Solutions by Ion Exchange Resins. J. Hazard. Mater. 2009, 167, 482–488. DOI: 10.1016/j.jhazmat.2009.01.006.
  • Allahkarami, E.; Rezai, B.; Bozorgmehr, M.; Adib, S. Extraction of Neodymium (III) from Aqueous Solutions by Solvent Extraction with Cyanex® 572. Physicochem. Probl. Miner. Process. 2021, 57, 127–135. DOI: 10.37190/ppmp/136080.
  • Allahkarami, E.; Rezai, B.; Bozorgmehr, M.; Adib, S. Synergistic Solvent Extraction of Neodymium Form Nitric Acid Medium Using Cyanex 302 and D2EHPA. Z Anorg. Allg. Chem. 2021, 647, 1294–1300. DOI: 10.1002/zaac.202100068.
  • Taseidifar, M.; Ziaee, M.; Pashley, R. M.; Ninham, B. W. Ion Flotation Removal of a Range of Contaminant Ions from Drinking Water. J. Environ. Chem. Eng. 2019, 7, 103263. DOI: 10.1016/j.jece.2019.103263.
  • Borbély, G.; Nagy, E. Removal of Zinc and Nickel Ions by Complexation–Membrane Filtration Process from Industrial Wastewater. Desalination 2009, 240, 218–226. DOI: 10.1016/j.desal.2007.11.073.
  • Azyan Muin, N. A.; Imam Maarof, H.; Ali Bashah, N. A.; Zubir, N. A.; Alrozi, R.; Nasuha, N. Electrochemical Removal of Copper Ions Using Coconut Shell Activated Carbon. Indo. J. Chem. 2020, 20, 530–535. DOI: 10.22146/ijc.43077.
  • Sepahvand, P.; Abdizadeh, G.; Noori, S. Inverse Design of an Irregular-Shaped Radiant Furnace Using Neural Network and a Modified Hybrid Optimization Algorithm. Thermal Sci. Eng. Progr. 2020, 20, 100730. DOI: 10.1016/j.tsep.2020.100730.
  • Hargreaves, A. J.; Vale, P.; Whelan, J.; Alibardi, L.; Constantino, C.; Dotro, G.; Cartmell, E.; Campo, P. Coagulation–Flocculation Process with Metal Salts, Synthetic Polymers and Biopolymers for the Removal of Trace Metals (Cu, Pb, Ni, Zn) from Municipal Wastewater. Clean Technol. Environ. Policy 2018, 20, 393–402. DOI: 10.1007/s10098-017-1481-3.
  • Liu, D.; Deng, S.; Vakili, M.; Du, R.; Tao, L.; Sun, J.; Wang, B.; Huang, J.; Wang, Y.; Yu, G. Fast and High Adsorption of Ni(II) on Vermiculite-Based Nanoscale Hydrated Zirconium Oxides. Chem. Eng. J. 2019, 360, 1150–1157. DOI: 10.1016/j.cej.2018.10.178.
  • Nashtifan, S. G.; Azadmehr, A.; Maghsoudi, A. Comparative and Competitive Adsorptive Removal of Ni2+ and Cu2+ from Aqueous Solution Using Iron Oxide-Vermiculite Composite. Appl. Clay Sci. 2017, 140, 38–49. DOI: 10.1016/j.clay.2016.12.020.
  • Sun, J.-M.; Shang, C.; Huang, J.-C. Co-Removal of Hexavalent Chromium through Copper Precipitation in Synthetic Wastewater. Environ. Sci. Technol. 2003, 37, 4281–4287. DOI: 10.1021/es030316h.
  • Bailey, S. E.; Olin, T. J.; Bricka, R. M.; Adrian, D. D. A Review of Potentially Low-Cost Sorbents for Heavy Metals. Water Res. 1999, 33, 2469–2479. DOI: 10.1016/S0043-1354(98)00475-8.
  • Bradl, H. B. Adsorption of Heavy Metal Ions on Soils and Soils Constituents. J Colloid Interface Sci. 2004, 277, 1–18. DOI: 10.1016/j.jcis.2004.04.005.
  • San Miguel, G.; Lambert, S. D.; Graham, N. J. D. A Practical Review of the Performance of Organic and Inorganic Adsorbents for the Treatment of Contaminated Waters. J. Chem. Technol. Biotechnol. 2006, 81, 1685–1696. DOI: 10.1002/jctb.1600.
  • Abollino, O.; Giacomino, A.; Malandrino, M.; Mentasti, E. Interaction of Metal Ions with Montmorillonite and Vermiculite. Appl. Clay Sci. 2008, 38, 227–236. DOI: 10.1016/j.clay.2007.04.002.
  • Batista, L. F. A.; de Mira, P. S.; De Presbiteris, R. J. B.; Grassi, M. T.; Salata, R. C.; Melo, V. F.; Abate, G. Vermiculite Modified with Alkylammonium Salts: characterization and Sorption of Ibuprofen and Paracetamol. Chem. Pap. 2021, 75, 4199–4216. DOI: 10.1007/s11696-021-01643-6.
  • Bhattacharyya, K. G.; Gupta, S. S. Adsorption of a Few Heavy Metals on Natural and Modified Kaolinite and Montmorillonite: A Review. Adv Colloid Interface Sci. 2008, 140, 114–131. DOI: 10.1016/j.cis.2007.12.008.
  • Nagy, N. M.; Kónya, J. Interfacial Chemistry of Rocks and Soils; CRC Press: Boca Raton, 2009.
  • Abate, G.; Masini, J. C. Adsorption of Atrazine, Hydroxyatrazine, Deethylatrazine, and Deisopropylatrazine onto Fe(III) polyhydroxy cations intercalated vermiculite and montmorillonite. J Agric Food Chem. 2005, 53, 1612–1619. DOI: 10.1021/jf048556j.
  • Pawar, R. R.; Gosai, K. A.; Bhatt, A. S.; Kumaresan, S.; Lee, S. M.; Bajaj, H. C. Clay Catalysed Rapid Valorization of Glycerol towards Cyclic Acetals and Ketals. RSC Adv. 2015, 5, 83985–83996. DOI: 10.1039/C5RA15817F.
  • Edathil, A. A.; Pal, P.; Banat, F. Alginate Clay Hybrid Composite Adsorbents for the Reclamation of Industrial Lean Methyldiethanolamine Solutions. Appl. Clay Sci. 2018, 156, 213–223. DOI: 10.1016/j.clay.2018.02.015.
  • Ely, A.; Baudu, M.; Kankou, M. O. S. A. O.; Basly, J.-P. Copper and Nitrophenol Removal by Low Cost Alginate/Mauritanian Clay Composite Beads. Chem. Eng. J. 2011, 178, 168–174. DOI: 10.1016/j.cej.2011.10.040.
  • Smith, J. A.; Jaffe, P. R.; Chiou, C. T. Effect of Ten Quaternary Ammonium Cations on Tetrachloromethane Sorption to Clay from Water. Environ. Sci. Technol. 1990, 24, 1167–1172. DOI: 10.1021/es00078a003.
  • Sadeghalvad, B.; Azadmehr, A.; Hezarkhani, A. Enhancing Adsorptive Removal of Sulfate by Metal Layered Double Hydroxide Functionalized Quartz-Albitophire Iron Ore Waste: preparation, Characterization and Properties. RSC Adv. 2016, 6, 67630–67642. DOI: 10.1039/C6RA10573D.
  • Allahkarami, E.; Rezai, B. Removal of Cerium from Different Aqueous Solutions Using Different Adsorbents: A Review. Process Saf. Environ. Prot. 2019, 124, 345–362. DOI: 10.1016/j.psep.2019.03.002.
  • Allahkarami, E.; Rezai, B. A Literature Review of Cerium Recovery from Different Aqueous Solutions. J. Environ. Chem. Eng. 2021, 9, 104956. DOI: 10.1016/j.jece.2020.104956.
  • Unuabonah, E. I.; Adebowale, K. O.; Olu-Owolabi, B. I. Kinetic and Thermodynamic Studies of the Adsorption of Lead (II) Ions onto Phosphate-Modified Kaolinite Clay. J. Hazard. Mater. 2007, 144, 386–395. DOI: 10.1016/j.jhazmat.2006.10.046.
  • Álvarez‐Ayuso, E.; García‐Sánchez, A. Removal of Heavy Metals from Waste Waters by Vermiculites. Environ. Technol. 2003, 24, 615–625. DOI: 10.1080/09593330309385596.
  • Wang, W.; Lu, Q.; Ren, X.; Liu, C.; Jin, J.; Yin, S.; Zhang, J.; Zhou, J. Synthesis of Novel ECH Crosslinked Chitosan Schiff Base-Sodium Alginate for Adsorption of Cd (II) Ion from Aqueous Solution. Desalin. Water Treat. 2019, 145, 169–178. DOI: 10.5004/dwt.2019.23649.
  • Wang, W.; Wang, A. Vermiculite Nanomaterials: structure, Properties, and Potential Applications. In Nanomaterials from Clay Minerals; Elsevier, 2019; 415–484.
  • Al-Abbasy, D. H. A. Synthesis and Characterization of Organosilicon Ligands and Used It in Removal of Some Divalent Metal Ions from Their Aqueous Solutions. Doctoral dissertation, University of Kerbala, 2019.
  • Holešová, S.; Reli, M.; Hundáková, M.; Barabaszová, K. Č.; Ritz, M.; Plevová, E.; Pazdziora, E. Synthesis and Antimicrobial Activity of Polyethylene/Chlorhexidine/Vermiculite Nanocomposites. J. Nanosci. Nanotechnol. 2019, 19, 2925–2933. DOI: 10.1166/jnn.2019.15850.
  • Taha, M. P. M.; Drew, G. H.; Longhurst, P. J.; Smith, R.; Pollard, S. J. T. Bioaerosol Releases from Compost Facilities: Evaluating Passive and Active Source Terms at a Green Waste Facility for Improved Risk Assessments. Atmos. Environ. 2006, 40, 1159–1169. DOI: 10.1016/j.atmosenv.2005.11.010.
  • Reddy, S. G.; Pandit, A. S. Biodegradable Sodium Alginate and Lignosulphonic Acid Blends: characterization and Swelling Studies. Polimeros 2013, 23, 13–18. DOI: 10.1590/S0104-14282013005000006.
  • Mandal, S.; Patil, V. S.; Mayadevi, S. Alginate and Hydrotalcite-like Anionic Clay Composite Systems: Synthesis, Characterization and Application Studies. Microporous Mesoporous Mater. 2012, 158, 241–246. DOI: 10.1016/j.micromeso.2012.03.046.
  • El-Ashtoukhy, E. S. Z.; Amin, N. K.; Abdelwahab, O. Removal of Lead (II) and Copper (II) from Aqueous Solution Using Pomegranate Peel as a New Adsorbent. Desalination 2008, 223, 162–173. DOI: 10.1016/j.desal.2007.01.206.
  • Hadi, M.; Samarghandi, M. R.; McKay, G. Equilibrium Two-Parameter Isotherms of Acid Dyes Sorption by Activated Carbons: study of Residual Errors. Chem. Eng. J. 2010, 160, 408–416. DOI: 10.1016/j.cej.2010.03.016.
  • Rodrigues, L. A.; da Silva, M. L. C. P. An Investigation of Phosphate Adsorption from Aqueous Solution onto Hydrous Niobium Oxide Prepared by co-Precipitation Method. Colloids Surf. A. 2009, 334, 191–196. DOI: 10.1016/j.colsurfa.2008.10.023.
  • Rodrigues, L. A.; da Silva, M. L. C. P. Thermodynamic and Kinetic Investigations of Phosphate Adsorption onto Hydrous Niobium Oxide Prepared by Homogeneous Solution Method. Desalination 2010, 263, 29–35. DOI: 10.1016/j.desal.2010.06.030.
  • Du, X.; Yuan, Q.; Li, Y. Equilibrium, Thermodynamics and Breakthrough Studies for Adsorption of Solanesol onto Macroporous Resins. Chem. Eng. Process 2008, 47, 1420–1427. DOI: 10.1016/j.cep.2007.10.005.
  • Ren, Y.; Wei, X.; Zhang, M. Adsorption Character for Removal Cu(II) by magnetic Cu(II) ion imprinted composite adsorbent. J. Hazard. Mater. 2008, 158, 14–22. DOI: 10.1016/j.jhazmat.2008.01.044.
  • Bo, S.; Luo, J.; An, Q.; Xiao, Z.; Wang, H.; Cai, W.; Zhai, S.; Li, Z. Efficiently Selective Adsorption of Pb (II) with Functionalized Alginate-Based Adsorbent in Batch/Column Systems: Mechanism and Application Simulation. J. Cleaner Prod. 2020, 250, 119585. DOI: 10.1016/j.jclepro.2019.119585.
  • Dong, Y.; Lin, H. Competitive Adsorption of Pb (II) and Zn (II) from Aqueous Solution by Modified Beer Lees in a Fixed Bed Column. Process Saf. Environ. Prot. 2017, 111, 263–269. DOI: 10.1016/j.psep.2017.06.016.
  • Gouran-Orimi, R.; Mirzayi, B.; Nematollahzadeh, A.; Tardast, A. Competitive Adsorption of Nitrate in Fixed-Bed Column Packed with Bio-Inspired Polydopamine Coated Zeolite. J. Environ. Chem. Eng. 2018, 6, 2232–2240. DOI: 10.1016/j.jece.2018.01.049.
  • Mahdi, Z.; Yu, Q. J.; El Hanandeh, A. Competitive Adsorption of Heavy Metal Ions (Pb2+, Cu2+, and Ni2+) onto Date Seed Biochar: batch and Fixed Bed Experiments. Sep. Sci. Technol. 2019, 54, 888–901. DOI: 10.1080/01496395.2018.1523192.
  • Bhattacharyya, K. G.; Gupta, S. S. Influence of Acid Activation on Adsorption of Ni(II) and Cu(II) on Kaolinite and Montmorillonite: Kinetic and Thermodynamic Study. Chem. Eng. J. 2008, 136, 1–13. DOI: 10.1016/j.cej.2007.03.005.
  • Et, A.; Shahmohammadi-Kalalagh, S. Isotherm and Kinetic Studies on Adsorption of Pb, Zn and Cu by Kaolinite. Casp. J. Environ. Sci. 2011, 9, 243–255.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.