252
Views
1
CrossRef citations to date
0
Altmetric
Articles

Cinnamaldehyde encapsulation within new natural wax-based nanoparticles; formation, optimization and characterization

, ORCID Icon, ORCID Icon &
Pages 1809-1820 | Received 06 Jul 2021, Accepted 16 Feb 2022, Published online: 03 Mar 2022

References

  • Salvia-Trujillo, L.; Verkempinck, S.; Rijal, S. K.; Loey, A. V.; Grauwet, T.; Hendrickx, M. Lipid Nanoparticles with Fats or Oils Containing β-Carotene: storage Stability and in Vitro Digestibility Kinetics. Food Chem. 2019, 278, 396–405. DOI: 10.1016/j.foodchem.2018.11.039.
  • Tian, H.; Lu, Z.; Li, D.; Hu, J. Preparation and Characterization of Citral-Loaded Solid Lipid Nanoparticles. Food Chem. 2018, 248, 78–85. DOI: 10.1016/j.foodchem.2017.11.091.
  • Xue, J.; Wang, T.; Hu, Q.; Zhou, M.; Luo, Y. Insight into Natural Biopolymer-Emulsified Solid Lipid Nanoparticles for Encapsulation of Curcumin: Effect of Loading Methods. Food Hydrocolloids 2018, 79, 110–116. DOI: 10.1016/j.foodhyd.2017.12.018.
  • Eltayeb, M.; Stride, E.; Edirisinghe, M.; Harker, A. Electrosprayed Nanoparticle Delivery System for Controlled Release. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 66, 138–146. DOI: 10.1016/j.msec.2016.04.001.
  • Schröder, A.; Sprakel, J.; Schroën, K.; Berton-Carabin, C. C. Tailored Microstructure of Colloidal Lipid Particles for Pickering Emulsions with Tunable Properties. Soft Matter. 2017, 13, 3190–3198. DOI: 10.1039/c6sm02432g.
  • Schröder, A.; Sprakel, J.; Schroën, K.; Spaen, J. N.; Berton-Carabin, C. C. Coalescence Stability of Pickering Emulsions Produced with Lipid Particles: A Microfluidic Study. J. Food Eng. 2018, 234, 63–72. DOI: 10.1016/j.jfoodeng.2018.04.007.
  • Soleimanian, Y.; Goli, S. A. H.; Varshosaz, J.; Sahafi, S. M. Formulation and Characterization of Novel Nanostructured Lipid Carriers Made from Beeswax, Propolis Wax and Pomegranate Seed Oil. Food Chem. 2018, 244, 83–92. DOI: 10.1016/j.foodchem.2017.10.010.
  • Fayaz, G.; Goli, S. A. H.; Kadivar, M.; Valoppi, F.; Barba, L.; Balducci, C.; Conte, L.; Calligaris, S.; Nicoli, M. C. Pomegranate Seed Oil Organogels Structured by Propolis Wax, Beeswax and Their Mixture. Eur. J. Lipid Sci. Technol. 2017, 119, 1700032–1700011. DOI: 10.1002/ejlt.201700032.
  • Zhang, X.; Wu, X.; Li, W.; Luo, X.; Li, Y.; Li, B.; Liu, S. Ethyl Cellulose Aqueous Dispersions: A Fascinating Supporter for Increasing the Solubility and Sustained‐Release of Cinnamaldehyde. J. Food Process. Preserv. 2018, 42, e13696–9. DOI: 10.1111/jfpp.13696.
  • Vyssotski, M.; Lagutin, K.; Catchpole, O. Simple Lipids and Hydrocarbons of New Zealand Propolis Wax. J. Apic. Res. 2018, 57, 271–277. DOI: 10.1080/00218839.2017.1384438.
  • Burdock, G. A. Review of the Biological Properties and Toxicity of Bee Propolis (Propolis). Food Chem. Toxicol. 1998, 36, 347–363. DOI: 10.1016/S0278-6915(97)00145-2.
  • Soleimanian, Y.; Goli, S. A. H.; Varshosaz, J.; Maestrelli, F. Propolis Wax Nanostructured Lipid Carrier for Delivery of β Sitosterol: Effect of Formulation Variables on Physicochemical Properties. Food Chem. 2018, 260, 97–105. DOI: 10.1016/j.foodchem.2018.03.145.
  • Shakeri, M.; Razavi, S. H.; Shakeri, S. Carvacrol and Astaxanthin co-Entrapment in Beeswax Solid Lipid Nanoparticles as an Efficient Nano-System with Dual Antioxidant and Antibiofilm Activities. LWT - Food Sci. Technol. 2019, 107, 280–290. DOI: 10.1016/j.lwt.2019.03.031.
  • Joye, I. J.; McClements, D. J. Production of Nanoparticles by Antisolvent Precipitation for Use in Food Systems. Trends in Food Science & Technology 2013, 34, 109–123. DOI: 10.1016/j.tifs.2013.10.002.
  • Aji Muhammad, D. R.; Sedaghat Doost, A.; Gupta, V.; bin Sintang, M. D.; Van der Walle, D.; Van der Meeren, P.; Dewettinck, K. Stability and Functionality of Xanthan Gum–Shellac Nanoparticles for the Encapsulation of Cinnamon Bark Extract. Food Hydrocolloids 2020, 100, 105377. DOI: 10.1016/j.foodhyd.2019.105377.
  • Hu, K.; McClements, D. J. Fabrication of Biopolymer Nanoparticles by Antisolvent Precipitation and Electrostatic Deposition: Zein-Alginate Core/Shell Nanoparticles. Food Hydrocolloids 2015, 44, 101–108. DOI: 10.1016/j.foodhyd.2014.09.015.
  • Chin, S. K.; Pang, S. C.; Tay, S. H. Size Controlled Synthesis of Starch Nanoparticles by a Simple Nanoprecipitation Method. Carbohydr. Polym. 2011, 86, 1817–1819. DOI: 10.1016/j.carbpol.2011.07.012.
  • Liu, F.; Tang, C. H. Phytosterol Colloidal Particles as Pickering Stabilizers for Emulsions. J. Agric. Food Chem. 2014, 62, 5133–5141. DOI: 10.1021/jf404930c.
  • Baschieri, A.; Ajvazi, M. D.; Tonfack, J. L. F.; Valgimigli, L.; Amorati, R. Explaining the Antioxidant Activity of Some Common Non-Phenolic Components of Essential Oils. Food Chem. 2017, 232, 656–663. DOI: 10.1016/j.foodchem.2017.04.036.
  • Sedaghat Doost, A.; Dewettinck, K.; Devlieghere, F.; Van der Meeren, P. Influence of Non-Ionic Emulsifier Type on the Stability of Cinnamaldehyde Nanoemulsions: A Comparison of Polysorbate 80 and Hydrophobically Modified Inulin. Food Chem. 2018, 258, 237–244. DOI: 10.1016/j.foodchem.2018.03.078.
  • Bashiri, S.; Ghanbarzadeh, B.; Ayaseh, A.; Dehghannya, J.; Ehsani, A. Preparation and Characterization of Chitosan-Coated Nanostructured Lipid Carriers (CH-NLC) Containing Cinnamon Essential Oil for Enriching Milk and anti-Oxidant Activity. LWT - Food Sci. Technol. 2020, 119, 108836. DOI: 10.1016/j.lwt.2019.108836.
  • Cortial, A.; Vocanson, M.; Loubry, E.; Briançon, S. Hot Homogenization Process Optimization for Fragrance Encapsulation in Solid Lipid Nanoparticles. Flavour Fragr. J. 2015, 30, 467–477. DOI: 10.1002/ffj.3259.
  • Sedaghat Doost, A.; Aji Muhammad, D. R.; Stevens, C. V.; Dewettinck, K.; Van der Meeren, P. Fabrication and Characterization of Quercetin Loaded Almond Gum-Shellac Nanoparticles Prepared by Antisolvent Precipitation. Food Hydrocolloids 2018, 83, 190–201. DOI: 10.1016/j.foodhyd.2018.04.050.
  • Akhoond Zardini, A.; Mohebbi, M.; Farhoosh, R.; Bolurian, S. Production and Characterization of Nanostructured Lipid Carriers and Solid Lipid Nanoparticles Containing Lycopene for Food Fortification. J. Food Sci. Technol. 2018, 55, 287–298. DOI: 10.1007/s13197-017-2937-5.
  • Tan, T. B.; Yussof, N. S.; Abas, F.; Mirhosseini, H.; Nehdi, I. A.; Tan, C. P. Forming a Lutein Nanodispersion via Solvent Displacement Method: The Effects of Processing Parameters and Emulsifiers with Different Stabilizing Mechanisms. Food Chem. 2016, 194, 416–423. DOI: 10.1016/j.foodchem.2015.08.045.
  • DomingosFontana, J.; Adelmann, J.; Passos, M.; Maraschin, M.; de Lacerda, C. A.; Mauro Lancas, F. 2004 Propolis: chemical Micro-Heterogenity and Bioactivity. In Methods in Biotechnology: Environmental Microbiology: Methods and Protocols, Spencer, J. F. T., Ragout de Spencer, A. L., Eds.New Jersey, USA: Humana Press, pp. 203–218. DOI: 10.1385/1592597653.
  • Wang, L.; Zhang, Y. Heat-Induced Self-Assembly of Zein Nanoparticles: fabrication, Stabilization and Potential Application as Oral Drug Delivery. Food Hydrocolloids 2019, 90, 403–412. DOI: 10.1016/j.foodhyd.2018.12.040.
  • Kumar, S.; Narayan, R.; Ahammed, V.; Nayak, Y.; Naha, A.; Nayak, U. Y. Development of Ritonavir Solid Lipid Nanoparticles by Box Behnken Design for Intestinal Lymphatic Targeting. J. Drug Delivery Sci. Technol. 2018, 44, 181–189. DOI: 10.1016/j.jddst.2017.12.014.
  • McClements, D. J.; Decker, E. A.; Weiss, J. Emulsion-Based Delivery Systems for Lipophilic Bioactive Components. J Food Sci. 2007, 72, R109–124. DOI: 10.1111/j.1750-3841.2007.00507.x.
  • Tamjidi, F.; Shahedi, M.; Varshosaz, J.; Nasirpour, A. Nanostructured Lipid Carriers (NLC): a Potential Delivery System for Bioactive Food Molecules. Innovative Food Sci. Emerging Technol. 2013, 19, 29–43. DOI: 10.1016/j.ifset.2013.03.002.
  • Park, S. J.; Garcia, C. V.; Shin, G. H.; Kim, J. T. Development of Nanostructured Lipid Carriers for the Encapsulation and Controlled Release of Vitamin D3. Food Chem. 2017, 225, 213–219. DOI: 10.1016/j.foodchem.2017.01.015.
  • Aditya, N. P.; Macedo, A. S.; Doktorovova, S.; Souto, E. B.; Kim, S.; Chang, P. S.; Ko, S. Development and Evaluation of Lipid Nanocarriers for Quercetin Delivery: A Comparative Study of Solid Lipid Nanoparticles (SLN), Nanostructured Lipid Carriers (NLC), and Lipid Nanoemulsions (LNE). LWT - Food Sci. Technol. 2014, 59, 115–121. DOI: 10.1016/j.lwt.2014.04.058.
  • Manea, A. M.; Vasile, B. S.; Meghea, A. Antioxidant and Antimicrobial Activities of Green Tea Extract Loaded into Nanostructured Lipid Carriers. CR. Chim. 2014, 17, 331–341. DOI: 10.1016/j.crci.2013.07.015.
  • Muhoza, B.; Xia, S.; Cai, J.; Zhang, X.; Duhoranimana, E.; Su, J. Gelatin and Pectin Complex Coacervates as Carriers for Cinnamaldehyde: Effect of Pectin Esterification Degree on Coacervate Formation, and Enhanced Thermal Stability. Food Hydrocolloids 2019, 87, 712–722. DOI: 10.1016/j.foodhyd.2018.08.051.
  • Liu, Q.; Cui, H.; Muhoza, B.; Duhoranimana, E.; Xia, S.; Hayat, K.; Hussain, S.; Tahir, M. U.; Zhang, X. Fabrication of Low Environment-Sensitive Nanoparticles for Cinnamaldehyde Encapsulation by Heat-Induced Gelation Method. Food Hydrocolloids 2020, 105, 105789. DOI: 10.1016/j.foodhyd.2020.105789.
  • Chantaburanan, T.; Teeranachaideekul, V.; Chantasart, D.; Jintapattanakit, A.; Junyaprasert, V. B. Effect of Binary Solid Lipid Matrix of Wax and Triglyceride on Lipid Crystallinity, Drug-Lipid Interaction and Drug Release of Ibuprofen-Loaded Solid Lipid Nanoparticles (SLN) for Dermal Delivery. J. Colloid Interface Sci. 2017, 504, 247–256. DOI: 10.1016/j.jcis.2017.05.038.
  • Weiss, J.; Decker, E. A.; McClements, D. J.; Kristbergsson, K.; Helgason, T.; Awad, T. Solid Lipid Nanoparticles as Delivery Systems for Bioactive Food Components. Food Biophys. 2008, 3, 146–154. DOI: 10.1007/s11483-008-9065-8.
  • Zafeiri, I.; Norton, J. E.; Smith, P.; Norton, I. T.; Spyropoulos, F. The Role of Surface Active Species in the Fabrication and Functionality of Edible Solid Lipid Particles. J. Colloid Interface Sci. 2017, 500, 228–240. DOI: 10.1016/j.jcis.2017.03.085.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.