315
Views
6
CrossRef citations to date
0
Altmetric
Articles

Formulation of roselle extract water-in-oil nanoemulsion for controlled pulmonary delivery

, ORCID Icon &
Pages 1830-1841 | Received 25 Jun 2021, Accepted 19 Feb 2022, Published online: 10 Mar 2022

References

  • Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. DOI: 10.3322/caac.21492.
  • Abdelaziz, H. M.; Gaber, M.; Abd-Elwakil, M. M.; Mabrouk, M. T.; Elgohary, M. M.; Kamel, N. M.; Kabary, D. M.; Freag, M. S.; Samaha, M. W.; Mortada, S. M.; et al. Inhalable Particulate Drug Delivery Systems for Lung Cancer Therapy: Nanoparticles, Microparticles, Nanocomposites and Nanoaggregates. J. Control Release 2018, 269, 374–392. DOI: 10.1016/j.jconrel.2017.11.036.
  • Meghani, N.; Patel, P.; Kansara, K.; Ranjan, S.; Dasgupta, N.; Ramalingam, C.; Kumar, A. Formulation of Vitamin D Encapsulated Cinnamon Oil Nanoemulsion: Its Potential anti-Cancerous Activity in Human Alveolar Carcinoma Cells. Colloids Surf. B 2018, 166, 349–357. DOI: 10.1016/j.colsurfb.2018.03.041.
  • Rajadurai, P.; How, S. H.; Liam, C. K.; Sachithanandan, A.; Soon, S. Y.; Tho, L. M. Lung Cancer in Malaysia. J. Thorac. Oncol. 2020, 15, 317–323. DOI: 10.1016/j.jtho.2019.10.021.
  • Neal, J. W.; Gubens, M. A.; Wakelee, H. A. Current Management of Small Cell Lung Cancer. Clin. Chest Med. 2011, 32, 853–863. DOI: 10.1016/j.ccm.2011.07.002.
  • Patra, J. K.; Das, G.; Fraceto, L. F.; Campos, E. V. R.; Rodriguez-Torres, M. D. P.; Acosta-Torres, L. S.; Diaz-Torres, L. A.; Grillo, R.; Swamy, M. K.; Sharma, S.; et al. Nano Based Drug Delivery Systems: Recent Developments and Future Prospects. J. Nanobiotechnol. 2018, 16, 71. DOI: 10.1186/s12951-018-0392-8.
  • Dietrich, M. F.; Gerber, D. E. Chemotherapy for Advanced Non-Small Cell Lung Cancer. In Lung Cancer; Karen L.Reckamp (Ed.), Springer, Switzerland, 2016; pp 119–149.
  • Arbain, N. H.; Salim, N.; Masoumi, H. R. F.; Wong, T. W.; Basri, M.; Rahman, M. B. A. In Vitro Evaluation of the Inhalable Quercetin Loaded Nanoemulsion for Pulmonary Delivery. Drug Deliv. Transl. Res. 2019, 9, 497–507. DOI: 10.1007/s13346-018-0509-5.
  • Sung, J. C.; Pulliam, B. L.; Edwards, D. A. Nanoparticles for Drug Delivery to the Lungs. Trends Biotechnol. 2007, 25, 563–570. DOI: 10.1016/j.tibtech.2007.09.005.
  • Javadzadeh, Y.; Yaqoubi, S. Therapeutic Nanostructures for Pulmonary Drug Delivery. In Andronescu, E., Grumezescu, A., Eds.; Nanostructures for Drug Delivery; Elsevier, 2017; pp 619–638.
  • Beck-Broichsitter, M.; Gauss, J.; Packhaeuser, C. B.; Lahnstein, K.; Schmehl, T.; Seeger, W.; Kissel, T.; Gessler, T. Pulmonary Drug Delivery with Aerosolizable Nanoparticles in an Ex Vivo Lung Model. Int. J. Pharm. 2009, 367, 169–178. DOI: 10.1016/j.ijpharm.2008.09.017.
  • Pilcer, G.; Amighi, K. Formulation Strategy and Use of Excipients in Pulmonary Drug Delivery. Int. J. Pharm. 2010, 392, 1–19. DOI: 10.1016/j.ijpharm.2010.03.017.
  • Onischuk, A. A.; Tolstikova, T. G.; Baklanov, A. M.; Khvostov, M. V.; Sorokina, I. V.; Zhukova, N. A.; An’kov, S. V.; Borovkova, O. V.; Dultseva, G. G.; Boldyrev, V. V.; et al. Generation, Inhalation Delivery and anti-Hypertensive Effect of Nisoldipine Nanoaerosol. J. Aerosol Sci. 2014, 78, 41–54. DOI: 10.1016/j.jaerosci.2014.08.004.
  • Chen, P.-N.; Chu, S.-C.; Chiou, H.-L.; Kuo, W.-H.; Chiang, C.-L.; Hsieh, Y.-S. Mulberry Anthocyanins, Cyanidin 3-Rutinoside and Cyanidin 3-Glucoside, Exhibited an Inhibitory Effect on the Migration and Invasion of a Human Lung Cancer Cell Line. Cancer Lett. 2006, 235, 248–259. DOI: 10.1016/j.canlet.2005.04.033.
  • Wang, L.-S.; Stoner, G. D. Anthocyanins and Their Role in Cancer Prevention. Cancer Lett. 2008, 269, 281–290. DOI: 10.1016/j.canlet.2008.05.020.
  • Lu, J. N.; Panchanathan, R.; Lee, W. S.; Kim, H. J.; Kim, D. H.; Choi, Y. H.; Kim, G.; Shin, S. C.; Hong, S. C. Anthocyanins from the Fruit of Vitis Coignetiae Pulliat Inhibit TNF-Augmented Cancer Proliferation, Migration, and Invasion in A549 Cells. Asian Pac. J. Cancer Prev. 2017, 18, 2919–2923.
  • Zhang, J.; Wu, J.; Liu, F.; Tong, L.; Chen, Z.; Chen, J.; He, H.; Xu, R.; Ma, Y.; Huang, C. Neuroprotective Effects of Anthocyanins and Its Major Component Cyanidin-3-O-Glucoside (C3G) in the Central Nervous System: An Outlined Review. Eur. J. Pharmacol. 2019, 858, 172500. DOI: 10.1016/j.ejphar.2019.172500.
  • Kalt, W.; Cassidy, A.; Howard, L. R.; Krikorian, R.; Stull, A. J.; Tremblay, F.; Zamora-Ros, R. Recent Research on the Health Benefits of Blueberries and Their Anthocyanins. Adv. Nutr. 2020, 11, 224–236. DOI: 10.1093/advances/nmz065.
  • Demirbas, A.; Yilmaz, V.; Ildiz, N.; Baldemir, A.; Ocsoy, I. Anthocyanins-Rich Berry Extracts Directed Formation of Ag NPs with the Investigation of Their Antioxidant and Antimicrobial Activities. J. Mol. Liq. 2017, 248, 1044–1049. DOI: 10.1016/j.molliq.2017.10.130.
  • Jurikova, T.; Skrovankova, S.; Mlcek, J.; Balla, S.; Snopek, L. Bioactive Compounds, Antioxidant Activity, and Biological Effects of European Cranberry (Vaccinium Oxycoccos). Molecules 2019, 24, 24. DOI: 10.3390/molecules24010024.
  • Sabatini, L.; Fraternale, D.; Di Giacomo, B.; Mari, M.; Albertini, M. C.; Gordillo, B.; Rocchi, M. B. L.; Sisti, D.; Coppari, S.; Semprucci, F.; et al. Chemical Composition, Antioxidant, Antimicrobial and anti-Inflammatory Activity of Prunus Spinosa L. fruit Ethanol Extract. J. Funct. Foods 2020, 67, 103885. DOI: 10.1016/j.jff.2020.103885.
  • Jamini, T. S.; Islam, A. K. M. A. Chapter 7 - Roselle (Hibiscus Sabdariffa L.): Nutraceutical and Pharmaceutical Significance. In Roselle; Sapuan, S. M., Nadlene, R., Radzi, A. M., Ilyas, R. A., Eds.; Academic Press, 2021; pp 103–119.
  • Izquierdo-Vega, J.; Arteaga-Badillo, D.; Sánchez-Gutiérrez, M.; Morales-González, J.; Vargas-Mendoza, N.; Gómez-Aldapa, C.; Castro-Rosas, J.; Delgado-Olivares, L.; Madrigal-Bujaidar, E.; Madrigal-Santillán, E. Madrigal-Santillán, E. Organic Acids from Roselle (Hibiscus Sabdariffa L.)—a Brief Review of Its Pharmacological Effects. Biomedicines 2020, 8, 100. DOI: 10.3390/biomedicines8050100.
  • Zannou, O.; Koca, I.; Aldawoud, T. M. S.; Galanakis, C. M. Recovery and Stabilization of Anthocyanins and Phenolic Antioxidants of Roselle (Hibiscus Sabdariffa L.) with Hydrophilic Deep Eutectic Solvents. Molecules (Basel, Switzerland) 2020, 25, 3715. DOI: 10.3390/molecules25163715.
  • Moyano, G.; Sáyago-Ayerdi, S. G.; Largo, C.; Caz, V.; Santamaria, M.; Tabernero, M. Potential Use of Dietary Fibre from Hibiscus Sabdariffa and Agave Tequilana in Obesity Management. J. Funct. Foods 2016, 21, 1–9. DOI: 10.1016/j.jff.2015.11.011.
  • Mohd-Nasir, H.; Wong, L.; Aziz, Z. A.; Mohd-Setapar, S.; Hassan, H. 2021 The Potential of Roselle as Health Supplement: Extraction, Phytochemicals and Future Perspective. In IOP Conference Series: Materials Science and Engineering; IOP Publishing; p 012082.
  • Tavakolifar, F.; Givianrad, M. H.; Saber-Tehrani, M. Extraction of Anthocyanins from Hibiscus Sabdariffa and Assessment of Its Antioxidant Properties in Extra Virgin Olive Oil. Fresenius Env. Bull. 2016, 25, 3709–3713.
  • Mulder-Krieger, T.; Verpoorte, R. Anthocyanins as Flower Pigments: Feasibilities for Flower Colour Modification; Springer Science & Business Media, Dordrecht, 2012.
  • Chumsri, P.; Sirichote, A.; Itharat, A. Studies on the Optimum Conditions for the Extraction and Concentration of Roselle (Hibiscus Sabdariffa Linn.) Extract. Songklanakarin J. Sci. Technol. 2008, 30. 133-139.
  • Lila, M. A.; Burton-Freeman, B.; Grace, M.; Kalt, W. Unraveling Anthocyanin Bioavailability for Human Health. Annu. Rev. Food Sci. Technol. 2016, 7, 375–393. DOI: 10.1146/annurev-food-041715-033346.
  • Kalam Azad, M.; Lim, Y.; Park, C.; Kang, W. Evaluation of Anthocyanin Stability in Surfactant Formulation from Extrudate Purple Potato (Solanum tuberosum L.). J. Food Process. Technol. 2018, 09, DOI: 10.4172/2157-7110.1000750. 9.
  • Mohamad, N. R.; Abd Gani, S. S.; Wahab, R. A.; Zaidan, U. H. Development of Nanoemulsion Incorporated with Hibiscus Sabdariffa for Cosmeceutical Application. Malaysian Appl. Biol. 2019, 48, 77–81.
  • Bernardi, D. S.; Pereira, T. A.; Maciel, N. R.; Bortoloto, J.; Viera, G. S.; Oliveira, G. C.; Rocha-Filho, P. A. Formation and Stability of Oil-in-Water Nanoemulsions Containing Rice Bran Oil: In Vitro and in Vivo Assessments. J. Nanobiotechnol. 2011, 9, 44. DOI: 10.1186/1477-3155-9-44.
  • Aswathanarayan, J. B.; Vittal, R. R. Nanoemulsions and Their Potential Applications in Food Industry. Front. Sustain. Food Syst. 2019, 3, 10–3389.
  • Solans, C.; Izquierdo, P.; Nolla, J.; Azemar, N.; Garcia-Celma, M. J. Nano-Emulsions. Curr. Opin. Colloid Interface Sci. 2005, 10, 102–110. DOI: 10.1016/j.cocis.2005.06.004.
  • Jasmina, H.; Džana, O.; Alisa, E.; Edina, V.; Ognjenka, R. Preparation of Nanoemulsions by High-Energy and Lowenergy Emulsification Methods. In CMBEBIH 2017; Springer, 2017; pp 317–322.
  • Wahgiman, N. A.; Salim, N.; Rahman, M. B. A.; Ashari, S. E. Optimization of Nanoemulsion Containing Gemcitabine and Evaluation of Its Cytotoxicity towards Human Fetal Lung Fibroblast (MRC5) and Human Lung Carcinoma (A549) Cells. Int. J. Nanomed. 2019, 14, 7323–7338. DOI: 10.2147/IJN.S212635.
  • Shah, K.; Chan, L. W.; Wong, T. W. Critical Physicochemical and Biological Attributes of Nanoemulsions for Pulmonary Delivery of Rifampicin by Nebulization Technique in Tuberculosis Treatment. Drug Deliv. 2017, 24, 1631–1647. DOI: 10.1080/10717544.2017.1384298.
  • ANVISA, T.B.H.R.A. Cosmetic Products Stability Guide. National Health Surveillance Agency: Brazil, 2004.
  • Tadros, T. F. Emulsion Formation, Stability, and Rheology. Emulsion Formation Stab. 2013, 1, 1–75.
  • Chung, C.; McClements, D. J. Characterization of Physicochemical Properties of Nanoemulsions: Appearance, Stability, and Rheology. In Nanoemulsions; Jafari, S. M.; McClements, D. J. Eds.; Academic Press, 2018; pp 547–576.
  • Azhar, S. N. A. S.; Ashari, S. E.; Salim, N. Development of a Kojic Monooleate-Enriched Oil-in-Water Nanoemulsion as a Potential Carrier for Hyperpigmentation Treatment. Int. J. Nanomed. 2018, 13, 6465–6479. DOI: 10.2147/IJN.S171532.
  • Miranda-Medina, A.; Hayward-Jones, P. M.; Carvajal-Zarrabal, O.; de Guevara, LdAL.; Ramírez-Villagómez, Y. D.; Barradas-Dermitz, D. M.; Luna-Carrillo, G.; Aguilar-Uscanga, M. G. Optimization of Hibiscus Sabdariffa L.(Roselle) Anthocyanin Aqueous-Ethanol Extraction Parameters Using Response Surface Methodology. Chem. Chem. Eng. Biotechnol. Food Ind. 2018, 19, 53–62.
  • Salim, N.; Ahmad, N.; Musa, S. H.; Hashim, R.; Tadros, T. F.; Basri, M. Nanoemulsion as a Topical Delivery System of Antipsoriatic Drugs. RSC Adv. 2016, 6, 6234–6250. DOI: 10.1039/C5RA14946K.
  • Sun, L.; Wan, K.; Hu, X.; Zhang, Y.; Yan, Z.; Feng, J.; Zhang, J. Functional Nanoemulsion-Hybrid Lipid Nanocarriers Enhance the Bioavailability and anti-Cancer Activity of Lipophilic Diferuloylmethane. Nanotechnology 2016, 27, 085102. DOI: 10.1088/0957-4484/27/8/085102.
  • Aswathanarayan, J. B.; Vittal, R. R.  Nanoemulsions and Their Potential Applications in Food Industry. Front. Sustain. Food Syst.  2019, 3, 95. DOI: 10.3389/fsufs.2019.00095.
  • Liew, J. C. L.; Nguyen, Q. D.; Ngothai, Y. Effect of Sodium Chloride on the Formation and Stability of n‐Dodecane Nanoemulsions by the PIT Method. Asia-Pacific J. Chem. Eng. 2010, 5, 570–576. DOI: 10.1002/apj.445.
  • Kumar, M.; Bishnoi, R. S.; Shukla, A. K.; Jain, C. P. Techniques for Formulation of Nanoemulsion Drug Delivery System: A Review. Prev. Nutr. Food Sci. 2019, 24, 225–234. DOI: 10.3746/pnf.2019.24.3.225.
  • Mohamad Saimi, N. I.; Salim, N.; Ahmad, N.; Abdulmalek, E.; Abdul Rahman, M. B. Aerosolized Niosome Formulation Containing Gemcitabine and Cisplatin for Lung Cancer Treatment: Optimization, Characterization and in Vitro Evaluation. Pharmaceutics 2021, 13, 59. DOI: 10.3390/pharmaceutics13010059.
  • Goel, A.; Baboota, S.; Sahni, J. K.; Ali, J. Exploring Targeted Pulmonary Delivery for Treatment of Lung Cancer. Int. J. Pharm. Investig. 2013, 3, 8–14. DOI: 10.4103/2230-973X.108959.
  • Arbain, N.; Basri, M.; Salim, N.; Wui, W.; Rahman, M. A. Development and Characterization of Aerosol Nanoemulsion System Encapsulating Low Water Soluble Quercetin for Lung Cancer Treatment. Mater. Today: Proc. 2018, 5, S137–S142. DOI: 10.1016/j.matpr.2018.08.055.
  • Asmawati, Mustapha, W. A. W.; Yusop, S. M.; Maskat, M. Y.; Shamsuddin, A. F. Characteristics of Cinnamaldehyde Nanoemulsion Prepared Using APV-High Pressure Homogenizer and Ultra Turrax. In AIP Conference Proceedings; American Institute of Physics, 2014; 244–250.
  • Kundu, P.; Arora, K.; Gu, Y.; Kumar, V.; Mishra, I. M. Formation and Stability of Water‐in‐Oil Nano‐Emulsions with Mixed Surfactant Using in‐Situ Combined Condensation‐Dispersion Method. Can. J. Chem. Eng. 2019, 97, 2039–2049. DOI: 10.1002/cjce.23481.
  • Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. DOI: 10.3390/pharmaceutics10020057.
  • Rodrigues, F. V.; Diniz, L. S.; Sousa, R. M.; Honorato, T. D.; Simão, D. O.; Araújo, C. R.; Gonçalves, T. M.; Rolim, L. A.; Goto, P. L.; Tedesco, A. C. Preparation and Characterization of Nanoemulsion Containing a Natural Naphthoquinone. Quim. Nova 2018, 41, 756–761.
  • Che Marzuki, N.H.; Wahab, R.A.; Abdul Hamid, M. An Overview of Nanoemulsion: Concepts of Development and Cosmeceutical Applications. Biotechnol. Biotechnol. Equip. 2019, 33, 779–797.
  • Zanela da Silva Marques, T.; Santos-Oliveira, R.; Betzler de Oliveira de Siqueira, L.; da Silva Cardoso, V.; Maria Faria de Freitas, Z.; Barros, R. C. S. A.; Vazquez Villa, A. L.; Monteiro, M. S. S. B.; Pereira dos Santos, E.; Ricci-Junior, E. Development and Characterization of a Nanoemulsion Containing Propranolol for Topical Delivery. Int. J. Nanomed. 2018, 13, 2827–2837. DOI: 10.2147/IJN.S164404.
  • Law, S. Stability of Preservative-Free Tobramycin in Half-Normal Saline. Can. J. Hosp. Pharm. 2001, 54, 213–214.
  • Fahad, A. S. Formulation and Evaluation of Paclitaxel-Loaded Nanoemulsion for Pulmonary Administration. University of Toledo, Ohio, 2016.
  • Lowry, R.; Wood, A.; Higenbottam, T. Effects of pH and Osmolarity on Aerosol-Induced Cough in Normal Volunteers. Clin. Sci. (Lond) 1988, 74, 373–376. DOI: 10.1042/cs0740373.
  • Samson, S.; Basri, M.; Masoumi, H. R. F.; Karjiban, R. A.; Malek, E. A. Design and Development of a Nanoemulsion System Containing Copper Peptide by D-Optimal Mixture Design and Evaluation of Its Physicochemical Properties. RSC Adv. 2016, 6, 17845–17856. DOI: 10.1039/C5RA24379C.
  • Kong, W.; Salim, N.; Masoumi, H. R. F.; Basri, M.; Da Costa, S. S.; Ahmad, N. Optimization of Hydrocortisone-Loaded Nanoemulsion Formulation Using D-Optimal Mixture Design. Asian J. Chem. 2018, 30, 853–858. DOI: 10.14233/ajchem.2018.21104.
  • Samson, S.; Basri, M.; Fard Masoumi, H. R.; Abdul Malek, E.; Abedi Karjiban, R. An Artificial Neural Network Based Analysis of Factors Controlling Particle Size in a Virgin Coconut Oil-Based Nanoemulsion System Containing Copper Peptide. PloS One. 2016, 11, e0157737. DOI: 10.1371/journal.pone.0157737.
  • Mohd Narawi, M.; Chiu, H. I.; Yong, Y. K.; Mohamad Zain, N. N.; Ramachandran, M. R.; Tham, C. L.; Samsurrijal, S. F.; Lim, V. Biocompatible Nutmeg Oil-Loaded Nanoemulsion as Phyto-Repellent. Front. Pharmacol. 2020, 11, 214. DOI: 10.3389/fphar.2020.00214.
  • Mangal, S.; Gao, W.; Li, T.; Zhou, Q. T. Pulmonary Delivery of Nanoparticle Chemotherapy for the Treatment of Lung Cancers: Challenges and Opportunities. Acta Pharmacol. Sin. 2017, 38, 782–797. DOI: 10.1038/aps.2017.34.
  • Liew, S. N.; Utra, U.; Alias, A. K.; Tan, T. B.; Tan, C. P.; Yussof, N. S. Physical, Morphological and Antibacterial Properties of Lime Essential Oil Nanoemulsions Prepared via Spontaneous Emulsification Method. LWT 2020, 128, 109388. DOI: 10.1016/j.lwt.2020.109388.
  • Roselan, M. A.; Ashari, S. E.; Faujan, N. H.; Mohd Faudzi, S. M.; Mohamad, R. Mohd Faudzi, S.M.; Mohamad, R. An Improved Nanoemulsion Formulation Containing Kojic Monooleate: Optimization, Characterization and in Vitro Studies. Molecules 2020, 25, 2616. DOI: 10.3390/molecules25112616.
  • Shahidan, N.; Salim, N.; Ashari, S. Preparation and Optimization of Ibuprofen-Loaded Nanoemulsion Formulation. J. Multidiscip. Eng. Sci. Technol. 2019, 6, 89–96.
  • Jang, Y.; Park, J.; Song, H. Y.; Choi, S. J. Ostwald Ripening Rate of Orange Oil Emulsions: Effects of Molecular Structure of Emulsifiers and Their Oil Composition. J. Food Sci. 2019, 84, 440–447. DOI: 10.1111/1750-3841.14464.
  • Kenneth, E. M.; Xavier, S. N.; John, M. C.; Patience, O. O.; Krause, R. Evaluation of Accelerated Stability Testing of a Mirtazapine-Loaded Nanoemulsion as per. Am. J. Nanosci. Nanotechnol. Res. 2018, 6, 1–10.
  • Galvão, K.; Vicente, A.; Sobral, PdA. Development, Characterization, and Stability of O/W Pepper Nanoemulsions Produced by High-Pressure Homogenization. Food Bioprocess Technol. 2018, 11, 355–367. DOI: 10.1007/s11947-017-2016-y.
  • Pereira, T. A.; Guerreiro, C. M.; Maruno, M.; Ferrari, M.; Rocha-Filho, P. A. Exotic Vegetable Oils for Cosmetic o/w Nanoemulsions: In Vivo Evaluation. Molecules 2016, 21, 248. DOI: 10.3390/molecules21030248.
  • Yahya, N. A.; Wahab, R. A.; Attan, N.; Hashim, S. E.; Abdul Hamid, M.; Mohamed Noor, N.; Abdul Rahman, A. Optimization of Oil-in-Water Nanoemulsion System of Ananas Comosus Peels Extract by D-Optimal Mixture Design and Its Physicochemical Properties. J. Dispersion Sci. Technol. 2022, 43, 302–315. DOI: 10.1080/01932691.2020.1839485.
  • Sharma, N.; Bansal, M.; Visht, S.; Sharma, P.; Kulkarni, G. Nanoemulsion: A New Concept of Delivery System. Chronicles of Young Sci. 2010, 1, 2.
  • Hidajat, M. J.; Jo, W.; Kim, H.; Noh, J. Effective Droplet Size Reduction and Excellent Stability of Limonene Nanoemulsion Formed by High-Pressure Homogenizer. Colloids Interfaces 2020, 4, 5. DOI: 10.3390/colloids4010005.
  • Ryu, V. Use of Different Ripening Inhibitors to Enhance Antimicrobial Activity of Essential Oil Nanoemulsion. 2017.
  • Musa, S. H.; Basri, M.; Masoumi, H. R. F.; Shamsudin, N.; Salim, N. Enhancement of Physicochemical Properties of Nanocolloidal Carrier Loaded with Cyclosporine for Topical Treatment of Psoriasis: In Vitro Diffusion and in Vivo Hydrating Action. Int. J. Nanomed. 2017, 12, 2427–2441. DOI: 10.2147/IJN.S125302.
  • Hadzir, N. M.; Basri, M.; Rahman, M. B. A.; Salleh, A. B.; Rahman, R. N. Z. R. A.; Basri, H. Phase Behaviour and Formation of Fatty Acid Esters Nanoemulsions Containing Piroxicam. AAPS PharmSciTech 2013, 14, 456–463. DOI: 10.1208/s12249-013-9929-1.
  • Lee, W.-H.; Loo, C.-Y.; Young, P. M.; Traini, D.; Mason, R. S.; Rohanizadeh, R. Recent Advances in Curcumin Nanoformulation for Cancer Therapy. Expert Opin Drug Deliv. 2014, 11, 1183–1201. DOI: 10.1517/17425247.2014.916686.
  • Miastkowska, M.; Śliwa, P. Influence of Terpene Type on the Release from an O/W Nanoemulsion: Experimental and Theoretical Studies. Molecules 2020, 25, 2747. DOI: 10.3390/molecules25122747.
  • Bali, V.; Ali, M.; Ali, J. Nanocarrier for the Enhanced Bioavailability of a Cardiovascular Agent: In Vitro, Pharmacodynamic, Pharmacokinetic and Stability Assessment. Int. J. Pharm. 2011, 403, 46–56. DOI: 10.1016/j.ijpharm.2010.10.018.
  • Pongsumpun, P.; Iwamoto, S.; Siripatrawan, U. Response Surface Methodology for Optimization of Cinnamon Essential Oil Nanoemulsion with Improved Stability and Antifungal Activity. Ultrason. Sonochem. 2020, 60, 104604.
  • Paarakh, M. P.; Jose, P. A.; Setty, C.; Christoper, G. Release Kinetics–Concepts and Applications. Int. J. Pharm. Res. Tech. 2018, 8, 12–20.
  • Laxmi, M.; Bhardwaj, A.; Mehta, S.; Mehta, A. Development and Characterization of Nanoemulsion as Carrier for the Enhancement of Bioavailability of Artemether. Artif. Cells. Nanomed. Biotechnol. 2015, 43, 334–344. DOI: 10.3109/21691401.2014.887018.
  • Sosa, L.; Clares, B.; Alvarado, H. L.; Bozal, N.; Domenech, O.; Calpena, A. C. Amphotericin B Releasing Topical Nanoemulsion for the Treatment of Candidiasis and Aspergillosis. Nanomedicine 2017, 13, 2303–2312. DOI: 10.1016/j.nano.2017.06.021.
  • Botros, S. R.; Hussein, A. K.; Mansour, H. F. A Novel Nanoemulsion Intermediate Gel as a Promising Approach for Delivery of Itraconazole: Design, in Vitro and Ex Vivo Appraisal. AAPS PharmSciTech 2020, 21, 1–13. DOI: 10.1208/s12249-020-01830-w.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.